Machine learning applications in placenta accreta spectrum disorders

IF 1.5 Q3 OBSTETRICS & GYNECOLOGY
Mahsa Danaei , Maryam Yeganegi , Sepideh Azizi , Fatemeh Jayervand , Seyedeh Elham Shams , Mohammad Hossein Sharifi , Reza Bahrami , Ali Masoudi , Amirhossein Shahbazi , Amirmasoud Shiri , Heewa Rashnavadi , Kazem Aghili , Hossein Neamatzadeh
{"title":"Machine learning applications in placenta accreta spectrum disorders","authors":"Mahsa Danaei ,&nbsp;Maryam Yeganegi ,&nbsp;Sepideh Azizi ,&nbsp;Fatemeh Jayervand ,&nbsp;Seyedeh Elham Shams ,&nbsp;Mohammad Hossein Sharifi ,&nbsp;Reza Bahrami ,&nbsp;Ali Masoudi ,&nbsp;Amirhossein Shahbazi ,&nbsp;Amirmasoud Shiri ,&nbsp;Heewa Rashnavadi ,&nbsp;Kazem Aghili ,&nbsp;Hossein Neamatzadeh","doi":"10.1016/j.eurox.2024.100362","DOIUrl":null,"url":null,"abstract":"<div><div>This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores. Furthermore, it underscores the importance of integrating quantitative imaging features with clinical data to enhance diagnostic accuracy and optimize surgical planning. The potential of ML to predict surgical morbidity by analyzing demographic and obstetric factors is also explored. Emphasizing the need for standardized methodologies to ensure consistent feature extraction and model performance, this review advocates for the integration of radiomics and ML into clinical workflows, aiming to improve patient outcomes and foster a multidisciplinary approach in high-risk pregnancies. Future research should focus on larger datasets and validation of biomarkers to refine predictive models in obstetric care.</div></div>","PeriodicalId":37085,"journal":{"name":"European Journal of Obstetrics and Gynecology and Reproductive Biology: X","volume":"25 ","pages":"Article 100362"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751428/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Obstetrics and Gynecology and Reproductive Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590161324000826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores. Furthermore, it underscores the importance of integrating quantitative imaging features with clinical data to enhance diagnostic accuracy and optimize surgical planning. The potential of ML to predict surgical morbidity by analyzing demographic and obstetric factors is also explored. Emphasizing the need for standardized methodologies to ensure consistent feature extraction and model performance, this review advocates for the integration of radiomics and ML into clinical workflows, aiming to improve patient outcomes and foster a multidisciplinary approach in high-risk pregnancies. Future research should focus on larger datasets and validation of biomarkers to refine predictive models in obstetric care.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
31
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信