Nan Hao, Huimin Zhang, Hui Jia, Yuwei Zhao, Jiaqi Li, Xiaoxiao Feng, Bowen Tang, Bin Zhao, Yingchao Liu
{"title":"Residual Dynamics of Chlorantraniliprole and Fludioxonil in Soil and Their Effects on the Microbiome.","authors":"Nan Hao, Huimin Zhang, Hui Jia, Yuwei Zhao, Jiaqi Li, Xiaoxiao Feng, Bowen Tang, Bin Zhao, Yingchao Liu","doi":"10.3390/jox15010004","DOIUrl":null,"url":null,"abstract":"<p><p>The increased use of chlorantraniliprole and fludioxonil has sparked concerns about their residues and impact on the soil microbiome, highlighting an urgent issue requiring attention. This study investigates the residue dynamics of corn after chlorantraniliprole and fludioxonil treatments, as well as their effects on soil enzyme activity and microbial community structure. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed a significant decrease in chlorantraniliprole and fludioxonil residues in the soil after combined application, especially with chlorantraniliprole. This application caused a temporary reduction in urease and sucrase activities. Furthermore, high-throughput sequencing of the soil microbiome revealed a decrease in the relative abundance of <i>Talaromyces</i> during fludioxonil application, while <i>Mortierela</i> and <i>Gibberella</i> increased. Additionally, <i>Vicianmibacteraceae</i> and <i>Vicianminbactererales</i> saw significant increases after chlorantraniliprole application. The combined application of chlorantraniliprole and fludioxonil not only decreased the population of harmful microorganisms but also lowered residue levels in the soil when compared to individual applications. This ultimately enhanced the efficacy of control measures and promoted environmental compatibility.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increased use of chlorantraniliprole and fludioxonil has sparked concerns about their residues and impact on the soil microbiome, highlighting an urgent issue requiring attention. This study investigates the residue dynamics of corn after chlorantraniliprole and fludioxonil treatments, as well as their effects on soil enzyme activity and microbial community structure. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed a significant decrease in chlorantraniliprole and fludioxonil residues in the soil after combined application, especially with chlorantraniliprole. This application caused a temporary reduction in urease and sucrase activities. Furthermore, high-throughput sequencing of the soil microbiome revealed a decrease in the relative abundance of Talaromyces during fludioxonil application, while Mortierela and Gibberella increased. Additionally, Vicianmibacteraceae and Vicianminbactererales saw significant increases after chlorantraniliprole application. The combined application of chlorantraniliprole and fludioxonil not only decreased the population of harmful microorganisms but also lowered residue levels in the soil when compared to individual applications. This ultimately enhanced the efficacy of control measures and promoted environmental compatibility.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.