Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker's Yeast Beta Glucan Consumption.

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
BioTech Pub Date : 2025-01-13 DOI:10.3390/biotech14010004
Brian K McFarlin, John H Curtis, Jakob L Vingren, David W Hill, Elizabeth A Bridgeman
{"title":"Discovery of Innate Immune Response mRNAs That Are Impacted by Structure-Specific Oral Baker's Yeast Beta Glucan Consumption.","authors":"Brian K McFarlin, John H Curtis, Jakob L Vingren, David W Hill, Elizabeth A Bridgeman","doi":"10.3390/biotech14010004","DOIUrl":null,"url":null,"abstract":"<p><p>The study of nutritional compounds with the potential to train the innate immune response has implications for human health. The objective of the current study was to discover by what means 6 weeks of oral baker's yeast beta glucan (BYBG) supplementation altered the mRNA expression of genes that reflect innate immune training in the absence of a physical stressor. Nineteen adults were randomly assigned to either a Wellmune<sup>®</sup> BYBG or Placebo for 6 weeks. BYBG uniquely altered the expression of 40 mRNAs associated with Dectin-1 and trained innate immunity, the innate immune response, the pathogen-associated (PAMP) and damage-associated molecular pattern (DAMP), and the inflammatory response. The observed changes were classified as immune training rather than immune priming due to the progressive increase in the expression of myeloid immune-associated mRNA. Combined with the findings of previous research, the findings of the present study support the claim that oral BYBG supplementation may be associated with trained innate immunity during resting homeostasis. Further, the key findings associated with BYBG may reflect improved responsiveness to future infection (exogenous) and/or sterile-inflammatory (endogenous) challenge.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"14 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech14010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The study of nutritional compounds with the potential to train the innate immune response has implications for human health. The objective of the current study was to discover by what means 6 weeks of oral baker's yeast beta glucan (BYBG) supplementation altered the mRNA expression of genes that reflect innate immune training in the absence of a physical stressor. Nineteen adults were randomly assigned to either a Wellmune® BYBG or Placebo for 6 weeks. BYBG uniquely altered the expression of 40 mRNAs associated with Dectin-1 and trained innate immunity, the innate immune response, the pathogen-associated (PAMP) and damage-associated molecular pattern (DAMP), and the inflammatory response. The observed changes were classified as immune training rather than immune priming due to the progressive increase in the expression of myeloid immune-associated mRNA. Combined with the findings of previous research, the findings of the present study support the claim that oral BYBG supplementation may be associated with trained innate immunity during resting homeostasis. Further, the key findings associated with BYBG may reflect improved responsiveness to future infection (exogenous) and/or sterile-inflammatory (endogenous) challenge.

发现先天免疫反应mrna受结构特异性口服贝克酵母葡聚糖消耗的影响。
对具有培养先天免疫反应潜力的营养化合物的研究对人类健康具有重要意义。当前研究的目的是发现在没有物理应激源的情况下,通过口服面包酵母β葡聚糖(BYBG)补充6周改变反映先天免疫训练的基因mRNA表达的方式。19名成年人被随机分配到Wellmune®BYBG或安慰剂组,为期6周。BYBG独特地改变了与Dectin-1相关的40种mrna的表达,并训练了先天免疫、先天免疫反应、病原体相关(PAMP)和损伤相关分子模式(DAMP)以及炎症反应。由于髓系免疫相关mRNA表达的进行性增加,观察到的变化被归类为免疫训练而不是免疫启动。结合先前的研究结果,本研究的结果支持口服BYBG补充可能与静息状态下训练的先天免疫有关的说法。此外,与BYBG相关的关键发现可能反映了对未来感染(外源性)和/或无菌炎症(内源性)挑战的反应性改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信