Systematic Review of Pre-Clinical Systems Using Artificial Microenvironments and Anti-Migratory Drugs to Control Migration of Glioblastoma Cells.

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hana Selvi, Anke Brüning-Richardson, Davide Danovi
{"title":"Systematic Review of Pre-Clinical Systems Using Artificial Microenvironments and Anti-Migratory Drugs to Control Migration of Glioblastoma Cells.","authors":"Hana Selvi, Anke Brüning-Richardson, Davide Danovi","doi":"10.1017/erm.2024.33","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts. Alongside, targeted therapies using anti-migratory or ‘migrastatic’ drugs are also being developed. This study aimed to review the therapeutic translational strategies emerging from the study of the GBM microenvironment and anti-migratory drugs.</p><p><strong>Methods: </strong>A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.</p><p><strong>Results: </strong>From the systems interrogated, the ‘Nanofibre’ assay is suitable to simulate white matter tracts, while hydrogel-based invasion assays and GBM cerebral organoid (GLICO) mimic the brain extracellular matrix. Inhibitors with anti-migratory activity found in this study are active involving distinct molecular mechanisms and have been tested on cell migration assays.</p><p><strong>Conclusion: </strong>Overall, we have analysed therapeutic strategies emerging from an artificial GBM TME approach and from the identification of anti-migratory inhibitors. Both carry potential to improve treatment options to prevent tumour dissemination and spread for GBM.</p>","PeriodicalId":50462,"journal":{"name":"Expert Reviews in Molecular Medicine","volume":"27 ","pages":"e6"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Reviews in Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/erm.2024.33","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts. Alongside, targeted therapies using anti-migratory or ‘migrastatic’ drugs are also being developed. This study aimed to review the therapeutic translational strategies emerging from the study of the GBM microenvironment and anti-migratory drugs.

Methods: A systematic literature search was carried out using search key terms and synonyms. Full-paper screening was performed based on specific inclusion and exclusion criteria.

Results: From the systems interrogated, the ‘Nanofibre’ assay is suitable to simulate white matter tracts, while hydrogel-based invasion assays and GBM cerebral organoid (GLICO) mimic the brain extracellular matrix. Inhibitors with anti-migratory activity found in this study are active involving distinct molecular mechanisms and have been tested on cell migration assays.

Conclusion: Overall, we have analysed therapeutic strategies emerging from an artificial GBM TME approach and from the identification of anti-migratory inhibitors. Both carry potential to improve treatment options to prevent tumour dissemination and spread for GBM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Reviews in Molecular Medicine
Expert Reviews in Molecular Medicine BIOCHEMISTRY & MOLECULAR BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
7.40
自引率
1.60%
发文量
45
期刊介绍: Expert Reviews in Molecular Medicine is an innovative online journal featuring authoritative and timely Reviews covering gene therapy, immunotherapeutics, drug design, vaccines, genetic testing, pathogenesis, microbiology, genomics, molecular epidemiology and diagnostic techniques. We especially welcome reviews on translational aspects of molecular medicine, particularly those related to the application of new understanding of the molecular basis of disease to experimental medicine and clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信