Qiu E Yang, Jiang Tao Gao, Shun Gui Zhou, Timothy R Walsh
{"title":"Cutting-edge tools for unveiling the dynamics of plasmid-host interactions.","authors":"Qiu E Yang, Jiang Tao Gao, Shun Gui Zhou, Timothy R Walsh","doi":"10.1016/j.tim.2024.12.013","DOIUrl":null,"url":null,"abstract":"<p><p>The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution. We also evaluate emerging techniques such as CRISPR-based phage engineering and discuss their potential for developing targeted strategies to curb ARG dissemination. Emerging data derived from these technologies have challenged our previous paradigms on plasmid-host compatibility and an awareness of an emerging uncharted realm for ARGs.</p>","PeriodicalId":23275,"journal":{"name":"Trends in Microbiology","volume":" ","pages":"496-509"},"PeriodicalIF":14.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tim.2024.12.013","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The plasmid-mediated transfer of antibiotic resistance genes (ARGs) in complex microbiomes presents a significant global health challenge. This review examines recent technological advancements that have enabled us to move beyond the limitations of culture-dependent detection of conjugation and have enhanced our ability to track and understand the movement of ARGs in real-world scenarios. We critically assess the applications of single-cell sequencing, fluorescence-based techniques and advanced high-throughput chromatin conformation capture (Hi-C) approaches in elucidating plasmid-host interactions at unprecedented resolution. We also evaluate emerging techniques such as CRISPR-based phage engineering and discuss their potential for developing targeted strategies to curb ARG dissemination. Emerging data derived from these technologies have challenged our previous paradigms on plasmid-host compatibility and an awareness of an emerging uncharted realm for ARGs.
期刊介绍:
Trends in Microbiology serves as a comprehensive, multidisciplinary forum for discussing various aspects of microbiology, spanning cell biology, immunology, genetics, evolution, virology, bacteriology, protozoology, and mycology. In the rapidly evolving field of microbiology, technological advancements, especially in genome sequencing, impact prokaryote biology from pathogens to extremophiles, influencing developments in drugs, vaccines, and industrial enzyme research.