Reorganization of gray matter networks in patients with Moyamoya disease.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Huan Zhu, Peijiong Wang, Wenjie Li, Qihang Zhang, Chenyu Zhu, Tong Liu, Tao Yu, Xingju Liu, Qian Zhang, Jizong Zhao, Yan Zhang
{"title":"Reorganization of gray matter networks in patients with Moyamoya disease.","authors":"Huan Zhu, Peijiong Wang, Wenjie Li, Qihang Zhang, Chenyu Zhu, Tong Liu, Tao Yu, Xingju Liu, Qian Zhang, Jizong Zhao, Yan Zhang","doi":"10.1038/s41598-025-86553-3","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with Moyamoya disease (MMD) exhibit significant alterations in brain structure and function, but knowledge regarding gray matter networks is limited. The study enrolled 136 MMD patients and 99 healthy controls (HCs). Clinical characteristics and gray matter network topology were analyzed. Compared to HCs, MMD patients exhibited decreased clustering coefficient (Cp) (P = 0.006) and local efficiency (Eloc) (P = 0.013). Ischemic patients showed decreased Eloc and increased characteristic path length (Lp) compared to asymptomatic and hemorrhagic patients (P < 0.001, Bonferroni corrected). MMD patients had significant regional abnormalities, including decreased degree centrality (DC) in the left medial orbital superior frontal gyrus, left orbital inferior frontal gyrus, and right calcarine fissure and surrounding cortex (P < 0.05, FDR corrected). Increased DC was found in bilateral olfactory regions, with higher betweenness centrality (BC) in the right median cingulate, paracingulate fusiform gyrus, and left pallidum (P < 0.05, FDR corrected). Ischemic patients had lower BC in the right hippocampus compared to hemorrhagic patients, while hemorrhagic patients had decreased DC in the right triangular part of the inferior frontal gyrus compared to asymptomatic patients (P < 0.05, Bonferroni corrected). Subnetworks related to MMD and white matter hyperintensity volume were identified. There is significant reorganization of gray matter networks in patients compared to HCs, and among different types of patients. Gray matter networks can effectively detect MMD-related brain structural changes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2788"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86553-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with Moyamoya disease (MMD) exhibit significant alterations in brain structure and function, but knowledge regarding gray matter networks is limited. The study enrolled 136 MMD patients and 99 healthy controls (HCs). Clinical characteristics and gray matter network topology were analyzed. Compared to HCs, MMD patients exhibited decreased clustering coefficient (Cp) (P = 0.006) and local efficiency (Eloc) (P = 0.013). Ischemic patients showed decreased Eloc and increased characteristic path length (Lp) compared to asymptomatic and hemorrhagic patients (P < 0.001, Bonferroni corrected). MMD patients had significant regional abnormalities, including decreased degree centrality (DC) in the left medial orbital superior frontal gyrus, left orbital inferior frontal gyrus, and right calcarine fissure and surrounding cortex (P < 0.05, FDR corrected). Increased DC was found in bilateral olfactory regions, with higher betweenness centrality (BC) in the right median cingulate, paracingulate fusiform gyrus, and left pallidum (P < 0.05, FDR corrected). Ischemic patients had lower BC in the right hippocampus compared to hemorrhagic patients, while hemorrhagic patients had decreased DC in the right triangular part of the inferior frontal gyrus compared to asymptomatic patients (P < 0.05, Bonferroni corrected). Subnetworks related to MMD and white matter hyperintensity volume were identified. There is significant reorganization of gray matter networks in patients compared to HCs, and among different types of patients. Gray matter networks can effectively detect MMD-related brain structural changes.

Abstract Image

Abstract Image

Abstract Image

烟雾病患者灰质网络的重组。
烟雾病(MMD)患者表现出明显的大脑结构和功能改变,但有关灰质网络的知识有限。该研究招募了136名烟雾病患者和99名健康对照(hc)。分析临床特征和灰质网络拓扑结构。与hcc相比,MMD患者的聚类系数(Cp) (P = 0.006)和局部效率(Eloc) (P = 0.013)降低。与无症状和出血患者相比,缺血性患者Eloc降低,特征路径长度(Lp)增加
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信