CAYSS: Package for Automatic Cytometry Analysis of Yeast Spore Segregation.

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2024-11-01 Epub Date: 2025-01-22 DOI:10.1002/yea.3988
Xavier Raffoux, Matthieu Falque
{"title":"CAYSS: Package for Automatic Cytometry Analysis of Yeast Spore Segregation.","authors":"Xavier Raffoux, Matthieu Falque","doi":"10.1002/yea.3988","DOIUrl":null,"url":null,"abstract":"<p><p>Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes. Applying this to yeast spores by flow cytometry has already been proved to be highly efficient, but manual analyses of distributions of signal intensities is time-consuming and produces nonperfectly reproducible results. Such analyses are required to identify events corresponding to spores and to assign each of them to a genotypic class depending on their fluorescence intensity. The CAYSS package automatically reproduces the manual process that we've been developing to analyze yeast recombination for years, including Maximum-Likelihood estimation of fluorescence extinction (Raffoux et al. 2018a). When comparing the results of manual versus CAYSS automatic analyses of the same cytometry data, recombination rates and interference were on average very similar, with less than 3% differences on average and strong correlations (R<sup>2</sup> > 0.9). In conclusion, as compared to manual analysis, CAYSS allows to save a lot of human time and produces totally reproducible results.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":"681-690"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.3988","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Meiotic recombination is a powerful source of haplotypic diversity, and thus plays an important role in the dynamics of short-term adaptation. However, high-throughput quantitative measurement of recombination parameters is challenging because of the large size of offspring to be genotyped. One of the most efficient approaches for large-scale recombination measurement is to study the segregation of fluorescent markers in gametes. Applying this to yeast spores by flow cytometry has already been proved to be highly efficient, but manual analyses of distributions of signal intensities is time-consuming and produces nonperfectly reproducible results. Such analyses are required to identify events corresponding to spores and to assign each of them to a genotypic class depending on their fluorescence intensity. The CAYSS package automatically reproduces the manual process that we've been developing to analyze yeast recombination for years, including Maximum-Likelihood estimation of fluorescence extinction (Raffoux et al. 2018a). When comparing the results of manual versus CAYSS automatic analyses of the same cytometry data, recombination rates and interference were on average very similar, with less than 3% differences on average and strong correlations (R2 > 0.9). In conclusion, as compared to manual analysis, CAYSS allows to save a lot of human time and produces totally reproducible results.

CAYSS:酵母孢子分离的自动细胞分析包。
减数分裂重组是单倍型多样性的重要来源,因此在短期适应动力学中起着重要作用。然而,重组参数的高通量定量测量具有挑战性,因为需要进行基因分型的后代很大。研究配子中荧光标记的分离是大规模重组测量最有效的方法之一。通过流式细胞术将其应用于酵母孢子已经被证明是非常高效的,但是对信号强度分布的人工分析是耗时的,并且产生不完全可重复的结果。需要这样的分析来确定与孢子相对应的事件,并根据它们的荧光强度将每个孢子分配到一个基因型类别。CAYSS软件包自动再现了我们多年来一直在开发的分析酵母重组的手动过程,包括荧光消光的最大似然估计(Raffoux等人,2018a)。当比较相同细胞术数据的人工和CAYSS自动分析结果时,重组率和干扰平均非常相似,平均差异小于3%,相关性强(R2 > 0.9)。总之,与手工分析相比,CAYSS可以节省大量的人力时间,并产生完全可重复的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信