Factors Associated With the Accuracy of Large Language Models in Basic Medical Science Examinations: Cross-Sectional Study.

IF 3.2 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Naritsaret Kaewboonlert, Jiraphon Poontananggul, Natthipong Pongsuwan, Gun Bhakdisongkhram
{"title":"Factors Associated With the Accuracy of Large Language Models in Basic Medical Science Examinations: Cross-Sectional Study.","authors":"Naritsaret Kaewboonlert, Jiraphon Poontananggul, Natthipong Pongsuwan, Gun Bhakdisongkhram","doi":"10.2196/58898","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Artificial intelligence (AI) has become widely applied across many fields, including medical education. Content validation and its answers are based on training datasets and the optimization of each model. The accuracy of large language model (LLMs) in basic medical examinations and factors related to their accuracy have also been explored.</p><p><strong>Objective: </strong>We evaluated factors associated with the accuracy of LLMs (GPT-3.5, GPT-4, Google Bard, and Microsoft Bing) in answering multiple-choice questions from basic medical science examinations.</p><p><strong>Methods: </strong>We used questions that were closely aligned with the content and topic distribution of Thailand's Step 1 National Medical Licensing Examination. Variables such as the difficulty index, discrimination index, and question characteristics were collected. These questions were then simultaneously input into ChatGPT (with GPT-3.5 and GPT-4), Microsoft Bing, and Google Bard, and their responses were recorded. The accuracy of these LLMs and the associated factors were analyzed using multivariable logistic regression. This analysis aimed to assess the effect of various factors on model accuracy, with results reported as odds ratios (ORs).</p><p><strong>Results: </strong>The study revealed that GPT-4 was the top-performing model, with an overall accuracy of 89.07% (95% CI 84.76%-92.41%), significantly outperforming the others (P<.001). Microsoft Bing followed with an accuracy of 83.69% (95% CI 78.85%-87.80%), GPT-3.5 at 67.02% (95% CI 61.20%-72.48%), and Google Bard at 63.83% (95% CI 57.92%-69.44%). The multivariable logistic regression analysis showed a correlation between question difficulty and model performance, with GPT-4 demonstrating the strongest association. Interestingly, no significant correlation was found between model accuracy and question length, negative wording, clinical scenarios, or the discrimination index for most models, except for Google Bard, which showed varying correlations.</p><p><strong>Conclusions: </strong>The GPT-4 and Microsoft Bing models demonstrated equal and superior accuracy compared to GPT-3.5 and Google Bard in the domain of basic medical science. The accuracy of these models was significantly influenced by the item's difficulty index, indicating that the LLMs are more accurate when answering easier questions. This suggests that the more accurate models, such as GPT-4 and Bing, can be valuable tools for understanding and learning basic medical science concepts.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"11 ","pages":"e58898"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Artificial intelligence (AI) has become widely applied across many fields, including medical education. Content validation and its answers are based on training datasets and the optimization of each model. The accuracy of large language model (LLMs) in basic medical examinations and factors related to their accuracy have also been explored.

Objective: We evaluated factors associated with the accuracy of LLMs (GPT-3.5, GPT-4, Google Bard, and Microsoft Bing) in answering multiple-choice questions from basic medical science examinations.

Methods: We used questions that were closely aligned with the content and topic distribution of Thailand's Step 1 National Medical Licensing Examination. Variables such as the difficulty index, discrimination index, and question characteristics were collected. These questions were then simultaneously input into ChatGPT (with GPT-3.5 and GPT-4), Microsoft Bing, and Google Bard, and their responses were recorded. The accuracy of these LLMs and the associated factors were analyzed using multivariable logistic regression. This analysis aimed to assess the effect of various factors on model accuracy, with results reported as odds ratios (ORs).

Results: The study revealed that GPT-4 was the top-performing model, with an overall accuracy of 89.07% (95% CI 84.76%-92.41%), significantly outperforming the others (P<.001). Microsoft Bing followed with an accuracy of 83.69% (95% CI 78.85%-87.80%), GPT-3.5 at 67.02% (95% CI 61.20%-72.48%), and Google Bard at 63.83% (95% CI 57.92%-69.44%). The multivariable logistic regression analysis showed a correlation between question difficulty and model performance, with GPT-4 demonstrating the strongest association. Interestingly, no significant correlation was found between model accuracy and question length, negative wording, clinical scenarios, or the discrimination index for most models, except for Google Bard, which showed varying correlations.

Conclusions: The GPT-4 and Microsoft Bing models demonstrated equal and superior accuracy compared to GPT-3.5 and Google Bard in the domain of basic medical science. The accuracy of these models was significantly influenced by the item's difficulty index, indicating that the LLMs are more accurate when answering easier questions. This suggests that the more accurate models, such as GPT-4 and Bing, can be valuable tools for understanding and learning basic medical science concepts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Medical Education
JMIR Medical Education Social Sciences-Education
CiteScore
6.90
自引率
5.60%
发文量
54
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信