Staphylococcus aureus nt5 gene mutation through CRISPR RNA-guided base editing weakens bacterial virulence and immune evasion.

IF 5.5 1区 农林科学 Q1 IMMUNOLOGY
Virulence Pub Date : 2025-12-01 Epub Date: 2025-01-22 DOI:10.1080/21505594.2025.2451163
Xinpeng Liu, Lan Huang, Yang Ye, Haiyi Wang, Min Tang, Fuqiang He, Zijing Xia, Shi Deng, Peng Zhang, Ruiwu Dai, Shufang Liang
{"title":"<i>Staphylococcus aureus nt5</i> gene mutation through CRISPR RNA-guided base editing weakens bacterial virulence and immune evasion.","authors":"Xinpeng Liu, Lan Huang, Yang Ye, Haiyi Wang, Min Tang, Fuqiang He, Zijing Xia, Shi Deng, Peng Zhang, Ruiwu Dai, Shufang Liang","doi":"10.1080/21505594.2025.2451163","DOIUrl":null,"url":null,"abstract":"<p><p>The resistance of commonly used clinical antibiotics, such as daptomycin (DAP), has become increasingly serious in the fight against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) infection. It is essential to explore key pathogenicity-driven genes/proteins in bacterial infection and antibiotics resistance, which contributes to develop novel therapeutic strategies against <i>S. aureus</i> infections. The <i>nt5</i> gene of <i>S. aureus</i>, encoding 5'-nucleotidase (NT5), is nearly unknown for its function in drug resistance and bacterial infection. Herein, to reveal <i>nt5</i> gene role in drug resistance and infection ability of <i>S. aureus</i>, we performed <i>nt5</i><sup>C166T</sup> gene mutation using a clustered regulatory interspaced short palindromic repeat ribonucleic acid (RNA)-guided base editing system to investigate the lose-of-function of NT5 protein. Subsequent transcriptome sequencing of the mutant strain revealed that <i>nt5</i> inactivation caused changes in cell membrane integrity and inhibited nucleotide metabolism, suggesting the <i>nt5</i> gene may be involved in bacterial drug resistance and virulence. The mutant strain exhibited enhanced tolerance to DAP treatment by attenuating cell membrane potential dissipation and slowing deoxyribonucleic acid release. Moreover, the <i>nt5</i> mutation alleviated abscess degree of mouse kidneys caused by <i>S. aureus</i> infection byreducing the expression of IL-1β, IL-6, and IL-18. The <i>nt5</i> mutant strain was easily swallowed by host immune cells, resulting in weak bacterial toxicity of the <i>S. aureus</i> mutant in the bacterial infection process. In summary, <i>nt5</i> gene mutation confers tolerance to DAP and a lower bacterial capacity to form kidney abscesses through phagocytosis of host immune cells, which indicates the targeted inhibition of NT5 protein would offer a potential new therapeutic strategy against <i>S. aureus</i> infection.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":"16 1","pages":"2451163"},"PeriodicalIF":5.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2025.2451163","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The resistance of commonly used clinical antibiotics, such as daptomycin (DAP), has become increasingly serious in the fight against Staphylococcus aureus (S. aureus) infection. It is essential to explore key pathogenicity-driven genes/proteins in bacterial infection and antibiotics resistance, which contributes to develop novel therapeutic strategies against S. aureus infections. The nt5 gene of S. aureus, encoding 5'-nucleotidase (NT5), is nearly unknown for its function in drug resistance and bacterial infection. Herein, to reveal nt5 gene role in drug resistance and infection ability of S. aureus, we performed nt5C166T gene mutation using a clustered regulatory interspaced short palindromic repeat ribonucleic acid (RNA)-guided base editing system to investigate the lose-of-function of NT5 protein. Subsequent transcriptome sequencing of the mutant strain revealed that nt5 inactivation caused changes in cell membrane integrity and inhibited nucleotide metabolism, suggesting the nt5 gene may be involved in bacterial drug resistance and virulence. The mutant strain exhibited enhanced tolerance to DAP treatment by attenuating cell membrane potential dissipation and slowing deoxyribonucleic acid release. Moreover, the nt5 mutation alleviated abscess degree of mouse kidneys caused by S. aureus infection byreducing the expression of IL-1β, IL-6, and IL-18. The nt5 mutant strain was easily swallowed by host immune cells, resulting in weak bacterial toxicity of the S. aureus mutant in the bacterial infection process. In summary, nt5 gene mutation confers tolerance to DAP and a lower bacterial capacity to form kidney abscesses through phagocytosis of host immune cells, which indicates the targeted inhibition of NT5 protein would offer a potential new therapeutic strategy against S. aureus infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Virulence
Virulence IMMUNOLOGY-MICROBIOLOGY
CiteScore
9.20
自引率
1.90%
发文量
123
审稿时长
6-12 weeks
期刊介绍: Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication. Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信