Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY
Eloise de Oliveira Lima, José Maurício Ramos de Souza Neto, Felipe Leonardo Seixas Castro, Letícia Maria Silva, Rebeca Andrade Laurentino, Vitória Ferreira Calado, Isolda Maria Barros Torquato, Karen Lúcia de Araújo Freitas Moreira, Suellen Marinho Andrade
{"title":"Eeg Microstates and Balance Parameters for Stroke Discrimination: A Machine Learning Approach.","authors":"Eloise de Oliveira Lima, José Maurício Ramos de Souza Neto, Felipe Leonardo Seixas Castro, Letícia Maria Silva, Rebeca Andrade Laurentino, Vitória Ferreira Calado, Isolda Maria Barros Torquato, Karen Lúcia de Araújo Freitas Moreira, Suellen Marinho Andrade","doi":"10.1007/s10548-024-01093-9","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited. We recorded EEG-MS using 32 channels during eyes-closed and eyes-open conditions and analyzed the four classical EEG-MS maps (A, B, C, D). Clinical information and motor aspects were evaluated. A machine learning method using k-means algorithms to discriminate stroke patients from healthy subjects showed that the most influential parameters in clustering were balance scores and microstate parameters (duration and coverage of microstate A, duration, coverage and occurrence of microstates C and global variance explained). To evaluate the quality of clustering, the Silhouette score was applied and the score was close to 0.20, indicating that the clusters overlap. These results are encouraging and support the usefulness of these methods for classifying stroke patients in order to contribute to the development of therapeutic strategies, improve the clinical management of these patients, and consequently reduce the associated costs.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 2","pages":"23"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-024-01093-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited. We recorded EEG-MS using 32 channels during eyes-closed and eyes-open conditions and analyzed the four classical EEG-MS maps (A, B, C, D). Clinical information and motor aspects were evaluated. A machine learning method using k-means algorithms to discriminate stroke patients from healthy subjects showed that the most influential parameters in clustering were balance scores and microstate parameters (duration and coverage of microstate A, duration, coverage and occurrence of microstates C and global variance explained). To evaluate the quality of clustering, the Silhouette score was applied and the score was close to 0.20, indicating that the clusters overlap. These results are encouraging and support the usefulness of these methods for classifying stroke patients in order to contribute to the development of therapeutic strategies, improve the clinical management of these patients, and consequently reduce the associated costs.

脑电微态和平衡参数用于脑卒中识别:一种机器学习方法。
脑电图微状态(EEG-MS)有望成为脑卒中的神经生物学生物标志物。因此,该研究的目的是利用机器学习方法,基于脑电图-质谱和临床特征,确定区分中风患者和健康个体的生物标志物。54名参与者(27名中风患者和27名年龄和性别匹配的健康对照组)被招募。我们在闭眼和睁眼条件下使用32个通道记录EEG-MS,并分析四种经典EEG-MS图(A, B, C, D)。评估临床信息和运动方面。采用k-means算法进行脑卒中患者与健康受试者区分的机器学习方法表明,聚类中影响最大的参数是平衡分数和微状态参数(微状态A的持续时间和覆盖范围、微状态C的持续时间、覆盖范围和发生率以及全局方差)。为了评价聚类的质量,我们采用了Silhouette评分,该评分接近0.20,表明聚类重叠。这些结果令人鼓舞并支持这些方法对脑卒中患者进行分类的有效性,从而有助于制定治疗策略,改善这些患者的临床管理,从而降低相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信