MR-linac: role of artificial intelligence and automation.

IF 2.7 3区 医学 Q3 ONCOLOGY
Strahlentherapie und Onkologie Pub Date : 2025-03-01 Epub Date: 2025-01-22 DOI:10.1007/s00066-024-02358-9
Serena Psoroulas, Alina Paunoiu, Stefanie Corradini, Juliane Hörner-Rieber, Stephanie Tanadini-Lang
{"title":"MR-linac: role of artificial intelligence and automation.","authors":"Serena Psoroulas, Alina Paunoiu, Stefanie Corradini, Juliane Hörner-Rieber, Stephanie Tanadini-Lang","doi":"10.1007/s00066-024-02358-9","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) into radiotherapy has advanced significantly during the past 5 years, especially in terms of automating key processes like organ at risk delineation and treatment planning. These innovations have enhanced consistency, accuracy, and efficiency in clinical practice. Magnetic resonance (MR)-guided linear accelerators (MR-linacs) have greatly improved treatment accuracy and real-time plan adaptation, particularly for tumors near radiosensitive organs. Despite these improvements, MR-guided radiotherapy (MRgRT) remains labor intensive and time consuming, highlighting the need for AI to streamline workflows and support rapid decision-making. Synthetic CTs from MR images and automated contouring and treatment planning will reduce manual processes, thus optimizing treatment times and expanding access to MR-linac technology. AI-driven quality assurance will ensure patient safety by predicting machine errors and validating treatment delivery. Advances in intrafractional motion management will increase the accuracy of treatment, and the integration of imaging biomarkers for outcome prediction and early toxicity assessment will enable more precise and effective treatment strategies.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":"298-305"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strahlentherapie und Onkologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00066-024-02358-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) into radiotherapy has advanced significantly during the past 5 years, especially in terms of automating key processes like organ at risk delineation and treatment planning. These innovations have enhanced consistency, accuracy, and efficiency in clinical practice. Magnetic resonance (MR)-guided linear accelerators (MR-linacs) have greatly improved treatment accuracy and real-time plan adaptation, particularly for tumors near radiosensitive organs. Despite these improvements, MR-guided radiotherapy (MRgRT) remains labor intensive and time consuming, highlighting the need for AI to streamline workflows and support rapid decision-making. Synthetic CTs from MR images and automated contouring and treatment planning will reduce manual processes, thus optimizing treatment times and expanding access to MR-linac technology. AI-driven quality assurance will ensure patient safety by predicting machine errors and validating treatment delivery. Advances in intrafractional motion management will increase the accuracy of treatment, and the integration of imaging biomarkers for outcome prediction and early toxicity assessment will enable more precise and effective treatment strategies.

linac先生:人工智能和自动化的作用。
人工智能(AI)与放射治疗的整合在过去5年中取得了显着进展,特别是在自动化关键过程方面,如危险器官描绘和治疗计划。这些创新提高了临床实践的一致性、准确性和效率。磁共振(MR)引导线性加速器(MR-linacs)极大地提高了治疗精度和实时计划适应,特别是对放射敏感器官附近的肿瘤。尽管有这些改进,磁共振引导放射治疗(MRgRT)仍然是劳动密集型和耗时的,这突出了人工智能对简化工作流程和支持快速决策的需求。从MR图像合成ct和自动轮廓和治疗计划将减少人工过程,从而优化治疗时间和扩大使用MR-linac技术。人工智能驱动的质量保证将通过预测机器错误和验证治疗交付来确保患者安全。病变内运动管理的进步将提高治疗的准确性,而成像生物标志物的预后预测和早期毒性评估的整合将使治疗策略更加精确和有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
12.90%
发文量
141
审稿时长
3-8 weeks
期刊介绍: Strahlentherapie und Onkologie, published monthly, is a scientific journal that covers all aspects of oncology with focus on radiooncology, radiation biology and radiation physics. The articles are not only of interest to radiooncologists but to all physicians interested in oncology, to radiation biologists and radiation physicists. The journal publishes original articles, review articles and case studies that are peer-reviewed. It includes scientific short communications as well as a literature review with annotated articles that inform the reader on new developments in the various disciplines concerned and hence allow for a sound overview on the latest results in radiooncology research. Founded in 1912, Strahlentherapie und Onkologie is the oldest oncological journal in the world. Today, contributions are published in English and German. All articles have English summaries and legends. The journal is the official publication of several scientific radiooncological societies and publishes the relevant communications of these societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信