{"title":"Exogenous dopamine application ameliorates chilling injury and preserves quality of kiwifruit during cold storage.","authors":"Morteza Soleimani Aghdam, Zeinab Asle-Mohammadi, Amin Ebrahimi, Farhang Razavi","doi":"10.1038/s41598-025-87542-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days. In addition, higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity arising from higher phenols and flavonoids accumulation in kiwifruits treated with 150 µM dopamine could be ascribed to higher phenylalanine ammonia-lyase (PAL) enzyme activity. Additionally, lower endogenous hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) accumulation along with higher ascorbic acid accumulation in kiwifruits treated with 150 µM dopamine could be attributed to lower superoxide dismutase (SOD) along with higher catalase (CAT) enzymes activity. Moreover, lower phospholipase D (PLD) and lipoxygenase (LOX) genes expression in kiwifruits treated with 150 µM dopamine was accompanied with membrane integrity preservation as evidenced by lower electrolyte leakage and malondialdehyde (MDA) accumulation. Therefore, exogenous dopamine could be employed as a potential technique for alleviating chilling injury in kiwifruits during cold storage.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2894"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754593/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87542-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the mechanisms employed by exogenous dopamine application in alleviating chilling injury in kiwifruits during storage at 1 °C for 120 days. Our results indicated that dopamine treatment at 150 µM alleviated chilling injury in kiwifruits during storage at 1 °C for 120 days. By 150 µM dopamine application, higher SUMO E3 ligase (SIZ1) and target of rapamycin (TOR) genes expression accompanied by lower poly(ADP-Ribose) polymerase 1 (PARP1) and sucrose non-fermenting 1-related kinase 1 (SnRK1) genes expression was associated with higher salicylic acid, ATP, NADPH and proline accumulation in kiwifruits during storage at 1 °C for 120 days. In addition, higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity arising from higher phenols and flavonoids accumulation in kiwifruits treated with 150 µM dopamine could be ascribed to higher phenylalanine ammonia-lyase (PAL) enzyme activity. Additionally, lower endogenous hydrogen peroxide (H2O2) accumulation along with higher ascorbic acid accumulation in kiwifruits treated with 150 µM dopamine could be attributed to lower superoxide dismutase (SOD) along with higher catalase (CAT) enzymes activity. Moreover, lower phospholipase D (PLD) and lipoxygenase (LOX) genes expression in kiwifruits treated with 150 µM dopamine was accompanied with membrane integrity preservation as evidenced by lower electrolyte leakage and malondialdehyde (MDA) accumulation. Therefore, exogenous dopamine could be employed as a potential technique for alleviating chilling injury in kiwifruits during cold storage.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.