O Grace Ehoche, Sai Krishna Arojju, M Z Zulfi Jahufer, Ruy Jauregui, Anna C Larking, Greig Cousins, Jennifer A Tate, Peter J Lockhart, Andrew G Griffiths
{"title":"Genomic selection shows improved expected genetic gain over phenotypic selection of agronomic traits in allotetraploid white clover.","authors":"O Grace Ehoche, Sai Krishna Arojju, M Z Zulfi Jahufer, Ruy Jauregui, Anna C Larking, Greig Cousins, Jennifer A Tate, Peter J Lockhart, Andrew G Griffiths","doi":"10.1007/s00122-025-04819-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.), a key forage legume which has shown limited genetic improvement in dry matter yield (DMY) and persistence traits. We used data from a training population comprising 200 half-sibling (HS) families evaluated in a cattle-grazed field trial across three years and two locations. Combining phenotype and genotyping-by-sequencing (GBS) data, we assessed different two-stage genomic prediction models, including KGD-GBLUP developed for low-depth GBS data, on DMY, growth score, leaf size and stolon traits. Predictive abilities were similar among the models, ranging from -0.17 to 0.44 across traits, and remained stable for most traits when reducing model input to 100-120 HS families and 5500 markers, suggesting genomic selection is viable with fewer resources. Incorporating a correlated trait with a primary trait in multi-trait prediction models increased predictive ability by 28-124%. Deterministic modelling showed integrating among-HS-family phenotypic selection and within-family genomic selection at different selection pressures estimated up to 89% DMY genetic gain compared to phenotypic selection alone, despite a modest predictive ability of 0.3. This study demonstrates the potential benefits of combining genomic and phenotypic selection to boost genetic gains in white clover. Using cost-effective GBS paired with a prediction model optimized for low read-depth data, the approach can achieve prediction accuracies comparable to traditional models, providing a viable path for implementing genomic selection in white clover.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 1","pages":"34"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04819-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Genomic selection using white clover multi-year-multi-site data showed predicted genetic gains through integrating among-half-sibling-family phenotypic selection and within-family genomic selection were up to 89% greater than half-sibling-family phenotypic selection alone. Genomic selection, an effective breeding tool used widely in plants and animals for improving low-heritability traits, has only recently been applied to forages. We explored the feasibility of implementing genomic selection in white clover (Trifolium repens L.), a key forage legume which has shown limited genetic improvement in dry matter yield (DMY) and persistence traits. We used data from a training population comprising 200 half-sibling (HS) families evaluated in a cattle-grazed field trial across three years and two locations. Combining phenotype and genotyping-by-sequencing (GBS) data, we assessed different two-stage genomic prediction models, including KGD-GBLUP developed for low-depth GBS data, on DMY, growth score, leaf size and stolon traits. Predictive abilities were similar among the models, ranging from -0.17 to 0.44 across traits, and remained stable for most traits when reducing model input to 100-120 HS families and 5500 markers, suggesting genomic selection is viable with fewer resources. Incorporating a correlated trait with a primary trait in multi-trait prediction models increased predictive ability by 28-124%. Deterministic modelling showed integrating among-HS-family phenotypic selection and within-family genomic selection at different selection pressures estimated up to 89% DMY genetic gain compared to phenotypic selection alone, despite a modest predictive ability of 0.3. This study demonstrates the potential benefits of combining genomic and phenotypic selection to boost genetic gains in white clover. Using cost-effective GBS paired with a prediction model optimized for low read-depth data, the approach can achieve prediction accuracies comparable to traditional models, providing a viable path for implementing genomic selection in white clover.
期刊介绍:
Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.