{"title":"A method for monitoring three dimensional surface deformation in mining areas combining SBAS-InSAR, GNSS and probability integral method.","authors":"Qiuxiang Tao, Ruixiang Liu, Xuepeng Li, Tengfei Gao, Yang Chen, Yixin Xiao, Huzhen He, Yunguang Wei","doi":"10.1038/s41598-025-87087-4","DOIUrl":null,"url":null,"abstract":"<p><p>In the process of mineral resource extraction, monitoring surface deformation is crucial for ensuring the safety of engineering and ground infrastructure. Monitoring complete three-dimensional surface deformation is particularly significant. Traditional synthetic aperture radar (InSAR) technology provides deformation components only along the line of sight (LOS) and often lacks sufficient effective data in vegetation-covered mining areas and mining subsidence centers. To address this, this study proposes a method (SBAS-PIM) that combines SBAS-InSAR with the probabilistic integral method (PIM). This method leverages high-coherence points in mining areas and GNSS data from vegetation-covered regions to invert the parameters required by PIM, thus obtaining three-dimensional surface deformation results. The proposed method allows for the acquisition of three-dimensional deformation data with fewer InSAR points and GNSS data, significantly reducing labor costs and addressing the gap in InSAR monitoring of three-dimensional surface deformation in densely vegetated areas. Additionally, it accounts for the mutual influence of multiple adjacent working faces. Finally, through the application to a mining area in Heze, China, the maximum displacements in the vertical, east-west, and north-south directions were obtained as -2011, -418, and - 281 mm, respectively. The correlation coefficients between the vertical and east-west directions and GNSS data were both greater than or equal to 0.9, indicating that this method can effectively monitor the three-dimensional surface deformation of the mining area.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"2853"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754891/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87087-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the process of mineral resource extraction, monitoring surface deformation is crucial for ensuring the safety of engineering and ground infrastructure. Monitoring complete three-dimensional surface deformation is particularly significant. Traditional synthetic aperture radar (InSAR) technology provides deformation components only along the line of sight (LOS) and often lacks sufficient effective data in vegetation-covered mining areas and mining subsidence centers. To address this, this study proposes a method (SBAS-PIM) that combines SBAS-InSAR with the probabilistic integral method (PIM). This method leverages high-coherence points in mining areas and GNSS data from vegetation-covered regions to invert the parameters required by PIM, thus obtaining three-dimensional surface deformation results. The proposed method allows for the acquisition of three-dimensional deformation data with fewer InSAR points and GNSS data, significantly reducing labor costs and addressing the gap in InSAR monitoring of three-dimensional surface deformation in densely vegetated areas. Additionally, it accounts for the mutual influence of multiple adjacent working faces. Finally, through the application to a mining area in Heze, China, the maximum displacements in the vertical, east-west, and north-south directions were obtained as -2011, -418, and - 281 mm, respectively. The correlation coefficients between the vertical and east-west directions and GNSS data were both greater than or equal to 0.9, indicating that this method can effectively monitor the three-dimensional surface deformation of the mining area.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.