Possible mechanisms of spermatogenic dysfunction induced by viral infections: Insights from COVID-19.

IF 2.7 3区 医学 Q2 OBSTETRICS & GYNECOLOGY
Reproductive Medicine and Biology Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.1002/rmb2.12625
Keisuke Okada, Chanhyon Kin, Yosuke Yamashita, Shun Kawamura, Katsuya Sato, Koji Chiba, Hideaki Miyake
{"title":"Possible mechanisms of spermatogenic dysfunction induced by viral infections: Insights from COVID-19.","authors":"Keisuke Okada, Chanhyon Kin, Yosuke Yamashita, Shun Kawamura, Katsuya Sato, Koji Chiba, Hideaki Miyake","doi":"10.1002/rmb2.12625","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As the COVID-19 pandemic nears resolution in 2024, the mechanisms by which SARS-CoV-2 and other viral infections induce spermatogenic dysfunction remain poorly understood. This review examines the mechanisms by which viral infections, particularly COVID-19, disrupt spermatogenesis and highlights the implications for male reproductive health. While reports suggest that spermatogenic dysfunction caused by COVID-19 is mild and transient, these findings may have broader applications in understanding and treating spermatogenic dysfunction caused by future viral infections.</p><p><strong>Methods: </strong>The PubMed database was searched to identify original and review articles investigating the mechanisms by which viral infections, particularly SARS-CoV-2, contribute to spermatogenic dysfunction.</p><p><strong>Main findings: </strong>SARS-CoV-2 affects the testis through multiple mechanisms, including ACE2 receptor-mediated entry, direct viral damage, inflammatory response, blood-testis barrier disruption, hormonal imbalance, oxidative stress, and impaired spermatogenesis. The combination of these factors can disrupt testicular function and highlights the complexity of the effects of COVID-19 on male reproductive health.</p><p><strong>Conclusion: </strong>COVID-19 may disrupt spermatogenesis through direct testicular infection, systemic inflammation, hormonal disruption, and oxidative stress. Ongoing research, vaccination efforts, and clinical vigilance are essential to address these challenges and develop effective treatment and prevention strategies.</p>","PeriodicalId":21116,"journal":{"name":"Reproductive Medicine and Biology","volume":"24 1","pages":"e12625"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmb2.12625","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: As the COVID-19 pandemic nears resolution in 2024, the mechanisms by which SARS-CoV-2 and other viral infections induce spermatogenic dysfunction remain poorly understood. This review examines the mechanisms by which viral infections, particularly COVID-19, disrupt spermatogenesis and highlights the implications for male reproductive health. While reports suggest that spermatogenic dysfunction caused by COVID-19 is mild and transient, these findings may have broader applications in understanding and treating spermatogenic dysfunction caused by future viral infections.

Methods: The PubMed database was searched to identify original and review articles investigating the mechanisms by which viral infections, particularly SARS-CoV-2, contribute to spermatogenic dysfunction.

Main findings: SARS-CoV-2 affects the testis through multiple mechanisms, including ACE2 receptor-mediated entry, direct viral damage, inflammatory response, blood-testis barrier disruption, hormonal imbalance, oxidative stress, and impaired spermatogenesis. The combination of these factors can disrupt testicular function and highlights the complexity of the effects of COVID-19 on male reproductive health.

Conclusion: COVID-19 may disrupt spermatogenesis through direct testicular infection, systemic inflammation, hormonal disruption, and oxidative stress. Ongoing research, vaccination efforts, and clinical vigilance are essential to address these challenges and develop effective treatment and prevention strategies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
5.90%
发文量
53
审稿时长
20 weeks
期刊介绍: Reproductive Medicine and Biology (RMB) is the official English journal of the Japan Society for Reproductive Medicine, the Japan Society of Fertilization and Implantation, the Japan Society of Andrology, and publishes original research articles that report new findings or concepts in all aspects of reproductive phenomena in all kinds of mammals. Papers in any of the following fields will be considered: andrology, endocrinology, oncology, immunology, genetics, function of gonads and genital tracts, erectile dysfunction, gametogenesis, function of accessory sex organs, fertilization, embryogenesis, embryo manipulation, pregnancy, implantation, ontogenesis, infectious disease, contraception, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信