Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yibi Zhang, Xiaodong Wang, Yinmin Gu, Tongfeng Liu, Xujie Zhao, Shuwen Cheng, Liqiang Duan, Chang Huang, Songzhe Wu, Shan Gao
{"title":"Complement C3 of tumor-derived extracellular vesicles promotes metastasis of RCC via recruitment of immunosuppressive myeloid cells.","authors":"Yibi Zhang, Xiaodong Wang, Yinmin Gu, Tongfeng Liu, Xujie Zhao, Shuwen Cheng, Liqiang Duan, Chang Huang, Songzhe Wu, Shan Gao","doi":"10.1073/pnas.2420005122","DOIUrl":null,"url":null,"abstract":"<p><p>Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, EV C3 induces the secretion of CCL2 and CXCL1 by lung macrophages and subsequently enhances TAM polarization and PMN-MDSC recruitment. Notably, targeting the CCL2/CCR2 or CXCL1/CXCR2 axis with the inhibitors RS504393 or Navarixin, respectively, effectively suppresses lung metastasis induced by RCC-derived C3 in a mouse model. Clinically, RCC patients with high expression of C3 demonstrate poor prognosis. Collectively, our findings reveal that tumor-derived EV C3 induces an immunosuppressive tumor microenvironment via TAMs, and thus promoting RCC metastasis.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 4","pages":"e2420005122"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2420005122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous roles of complement C3 have been implicated in tumor metastasis and are highly context dependent. However, the underlying mechanisms linking C3 to tumor metastasis remain elusive in renal cell carcinoma (RCC). Here, we demonstrate that C3 of RCC cell-derived extracellular vesicles (EVs) contributes to metastasis via polarizing tumor-associated macrophages (TAMs) into the immunosuppressive phenotype and recruiting polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Mechanistically, EV C3 induces the secretion of CCL2 and CXCL1 by lung macrophages and subsequently enhances TAM polarization and PMN-MDSC recruitment. Notably, targeting the CCL2/CCR2 or CXCL1/CXCR2 axis with the inhibitors RS504393 or Navarixin, respectively, effectively suppresses lung metastasis induced by RCC-derived C3 in a mouse model. Clinically, RCC patients with high expression of C3 demonstrate poor prognosis. Collectively, our findings reveal that tumor-derived EV C3 induces an immunosuppressive tumor microenvironment via TAMs, and thus promoting RCC metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信