{"title":"C-type natriuretic peptide promotes human granulosa cell growth and estradiol production: Implications for early follicle development.","authors":"Yorino Sato, Kazuhiro Kawamura","doi":"10.1002/rmb2.12626","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.</p><p><strong>Methods: </strong>A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed. The regulation of CNP encoding natriuretic peptide C (NPPC) and NPR2 by estradiol and oocyte-derived factors (ODFs) was examined.</p><p><strong>Results: </strong>Besides detecting both NPPC and NPR2, CNP increased cellular proliferation. The specific action of CNP on cell proliferation was confirmed using siRNA transfection. CNP stimulated cGMP production, whereas a guanylate-cyclase inhibitor suppressed CNP-induced cell proliferation. Estradiol production was elevated by CNP treatment, accompanied by increased expression of estrogen synthetic enzymes. Furthermore, CNP upregulated NPR2 expression in cooperation with estradiol and ODFs, while estradiol increased NPPC expression.</p><p><strong>Conclusion: </strong>This study demonstrates CNP stimulation of human granulosa cell growth and suggests potential cross-talk between these cells and oocytes. Further research on the simultaneous administration of CNP and estradiol may offer a promising approach for promoting early-stage follicle development in infertility treatments for patients with poor ovarian reserve.</p>","PeriodicalId":21116,"journal":{"name":"Reproductive Medicine and Biology","volume":"24 1","pages":"e12626"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmb2.12626","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.
Methods: A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed. The regulation of CNP encoding natriuretic peptide C (NPPC) and NPR2 by estradiol and oocyte-derived factors (ODFs) was examined.
Results: Besides detecting both NPPC and NPR2, CNP increased cellular proliferation. The specific action of CNP on cell proliferation was confirmed using siRNA transfection. CNP stimulated cGMP production, whereas a guanylate-cyclase inhibitor suppressed CNP-induced cell proliferation. Estradiol production was elevated by CNP treatment, accompanied by increased expression of estrogen synthetic enzymes. Furthermore, CNP upregulated NPR2 expression in cooperation with estradiol and ODFs, while estradiol increased NPPC expression.
Conclusion: This study demonstrates CNP stimulation of human granulosa cell growth and suggests potential cross-talk between these cells and oocytes. Further research on the simultaneous administration of CNP and estradiol may offer a promising approach for promoting early-stage follicle development in infertility treatments for patients with poor ovarian reserve.
期刊介绍:
Reproductive Medicine and Biology (RMB) is the official English journal of the Japan Society for Reproductive Medicine, the Japan Society of Fertilization and Implantation, the Japan Society of Andrology, and publishes original research articles that report new findings or concepts in all aspects of reproductive phenomena in all kinds of mammals. Papers in any of the following fields will be considered: andrology, endocrinology, oncology, immunology, genetics, function of gonads and genital tracts, erectile dysfunction, gametogenesis, function of accessory sex organs, fertilization, embryogenesis, embryo manipulation, pregnancy, implantation, ontogenesis, infectious disease, contraception, etc.