The Significant Effects of Threshold Selection for Advancing Nitrogen Use Efficiency in Whole Genome of Bread Wheat.

IF 2.3 3区 生物学 Q2 PLANT SCIENCES
Plant Direct Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1002/pld3.70036
Mohammad Bahman Sadeqi, Agim Ballvora, Said Dadshani, Md Nurealam Siddiqui, Mohammad Kamruzzaman, Ahossi Patrice Koua, Jens Léon
{"title":"The Significant Effects of Threshold Selection for Advancing Nitrogen Use Efficiency in Whole Genome of Bread Wheat.","authors":"Mohammad Bahman Sadeqi, Agim Ballvora, Said Dadshani, Md Nurealam Siddiqui, Mohammad Kamruzzaman, Ahossi Patrice Koua, Jens Léon","doi":"10.1002/pld3.70036","DOIUrl":null,"url":null,"abstract":"<p><p>Currently in wheat breeding, genome wide association studies (GWAS) have successfully revealed the genetic basis of complex traits such as nitrogen use efficiency (NUE) and its biological processes. In the GWAS model, thresholding is common strategy to indicate deviation of expected range of <i>p</i>-<i>value</i>(s), and it can be used to find the distribution of true positive associations under or over of test statistics. Therefore, the threshold plays a critical role to identify reliable and significant associations in wide genome, while the proportion of false positive results is relatively low. The problem of multiple comparisons arises when a statistical analysis involves multiple simultaneous statistical tests, each of them has the potential to be a discovery. There are several ways to address this problem, including the family-wise error rate and false discovery rate (FDR), raw and adjusted <i>p</i>-<i>value</i>(s), consideration of threshold coherence and consonance, and the properties of proportional hypothesis tests in the threshold definition. We encountered some limitations in the definition of FDR threshold, particularly in the upper bounds of linear and nonlinear approaches. We emphasize that empirical null distributions based on permutation test can be useful when the assumption of linear or parametric FDR approaches do not hold. Nevertheless, we believe that it is necessary to utilize modern statistical optimization techniques to evaluate the stability and performance of our results and to select significant FDR threshold. By incorporating the neural network algorithm, it is possible to improve the reliability of FDR threshold and increase the probability of identifying true genetic associations while minimizing the risk of false positives in GWAS results.</p>","PeriodicalId":20230,"journal":{"name":"Plant Direct","volume":"9 1","pages":"e70036"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pld3.70036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Currently in wheat breeding, genome wide association studies (GWAS) have successfully revealed the genetic basis of complex traits such as nitrogen use efficiency (NUE) and its biological processes. In the GWAS model, thresholding is common strategy to indicate deviation of expected range of p-value(s), and it can be used to find the distribution of true positive associations under or over of test statistics. Therefore, the threshold plays a critical role to identify reliable and significant associations in wide genome, while the proportion of false positive results is relatively low. The problem of multiple comparisons arises when a statistical analysis involves multiple simultaneous statistical tests, each of them has the potential to be a discovery. There are several ways to address this problem, including the family-wise error rate and false discovery rate (FDR), raw and adjusted p-value(s), consideration of threshold coherence and consonance, and the properties of proportional hypothesis tests in the threshold definition. We encountered some limitations in the definition of FDR threshold, particularly in the upper bounds of linear and nonlinear approaches. We emphasize that empirical null distributions based on permutation test can be useful when the assumption of linear or parametric FDR approaches do not hold. Nevertheless, we believe that it is necessary to utilize modern statistical optimization techniques to evaluate the stability and performance of our results and to select significant FDR threshold. By incorporating the neural network algorithm, it is possible to improve the reliability of FDR threshold and increase the probability of identifying true genetic associations while minimizing the risk of false positives in GWAS results.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Direct
Plant Direct Environmental Science-Ecology
CiteScore
5.00
自引率
3.30%
发文量
101
审稿时长
14 weeks
期刊介绍: Plant Direct is a monthly, sound science journal for the plant sciences that gives prompt and equal consideration to papers reporting work dealing with a variety of subjects. Topics include but are not limited to genetics, biochemistry, development, cell biology, biotic stress, abiotic stress, genomics, phenomics, bioinformatics, physiology, molecular biology, and evolution. A collaborative journal launched by the American Society of Plant Biologists, the Society for Experimental Biology and Wiley, Plant Direct publishes papers submitted directly to the journal as well as those referred from a select group of the societies’ journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信