Integrating machine learning with advanced processing and characterization for polycrystalline materials: a methodology review and application to iron-based superconductors.
IF 7.4 3区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akiyasu Yamamoto, Akinori Yamanaka, Kazumasa Iida, Yusuke Shimada, Satoshi Hata
{"title":"Integrating machine learning with advanced processing and characterization for polycrystalline materials: a methodology review and application to iron-based superconductors.","authors":"Akiyasu Yamamoto, Akinori Yamanaka, Kazumasa Iida, Yusuke Shimada, Satoshi Hata","doi":"10.1080/14686996.2024.2436347","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e. grains, grain boundaries [GBs], and microstructures) and summarize their various aspects (experimental synthesis, artificial single GBs, multiscale experimental data acquisition via electron microscopy, formation process modeling, property description modeling, 3D reconstruction, and data-driven design methods). Specifically, we discuss a mechanochemical process involving high-energy milling, in situ observation of microstructural formation using 3D scanning transmission electron microscopy, phase-field modeling coupled with Bayesian data assimilation, nano-orientation analysis via scanning precession electron diffraction, semantic segmentation using neural network models, and the Bayesian-optimization-based process design using BOXVIA software. As a proof of concept, a researcher- and data-driven process design methodology is applied to a polycrystalline iron-based superconductor to evaluate its bulk magnet properties. Finally, future challenges and prospects for data-driven material development and iron-based superconductors are discussed.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2436347"},"PeriodicalIF":7.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2436347","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e. grains, grain boundaries [GBs], and microstructures) and summarize their various aspects (experimental synthesis, artificial single GBs, multiscale experimental data acquisition via electron microscopy, formation process modeling, property description modeling, 3D reconstruction, and data-driven design methods). Specifically, we discuss a mechanochemical process involving high-energy milling, in situ observation of microstructural formation using 3D scanning transmission electron microscopy, phase-field modeling coupled with Bayesian data assimilation, nano-orientation analysis via scanning precession electron diffraction, semantic segmentation using neural network models, and the Bayesian-optimization-based process design using BOXVIA software. As a proof of concept, a researcher- and data-driven process design methodology is applied to a polycrystalline iron-based superconductor to evaluate its bulk magnet properties. Finally, future challenges and prospects for data-driven material development and iron-based superconductors are discussed.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.