XinJin Yu, SiYu Cao, JinDi Wang, DaLu Li, YongJun He
{"title":"Comprehensive genomic analysis of SmbHLH genes and the role of SmbHLH93 in eggplant anthocyanin biosynthesis.","authors":"XinJin Yu, SiYu Cao, JinDi Wang, DaLu Li, YongJun He","doi":"10.1007/s00299-025-03429-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation. As an outstanding source of anthocyanins, eggplant (Solanum melongena L.) is extremely beneficial for human health. In the process of anthocyanin biosynthesis in eggplant, the basic helix-loop-helix (bHLH) transcription factor family plays a crucial role. However, the bHLH gene family is extensive, making it difficult to systematically screen and analyze their functions using conventional methods. We studied the phylogeny, gene structure, conserved motifs, promoter element, and chromosomal location of the 166 SmbHLH genes in the recently released eggplant genome. Through the analysis of transcriptomic data of eggplant peel treated with light, it was found that SmbHLH93 was the most responsive to light among those of unknown function. Additionally, it was discovered that SmbHLH93 plays a positive regulatory role in anthocyanin synthesis through dual-luciferase reporter assay(dual-LUC) and genetic transformation in Arabidopsis (Arabidopsis thaliana). Furthermore, experiments involving yeast two-hybrid (Y2H), luciferase complementation assay (Split-LUC), and tobacco transient transformation demonstrated that SmbHLH93 has the ability to interact with SmMYB1 in order to enhance anthocyanin accumulation. This study will serve as a foundation for exploring the role of SmbHLH transcription factors in anthocyanin biosynthesis in the future.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"36"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03429-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation. As an outstanding source of anthocyanins, eggplant (Solanum melongena L.) is extremely beneficial for human health. In the process of anthocyanin biosynthesis in eggplant, the basic helix-loop-helix (bHLH) transcription factor family plays a crucial role. However, the bHLH gene family is extensive, making it difficult to systematically screen and analyze their functions using conventional methods. We studied the phylogeny, gene structure, conserved motifs, promoter element, and chromosomal location of the 166 SmbHLH genes in the recently released eggplant genome. Through the analysis of transcriptomic data of eggplant peel treated with light, it was found that SmbHLH93 was the most responsive to light among those of unknown function. Additionally, it was discovered that SmbHLH93 plays a positive regulatory role in anthocyanin synthesis through dual-luciferase reporter assay(dual-LUC) and genetic transformation in Arabidopsis (Arabidopsis thaliana). Furthermore, experiments involving yeast two-hybrid (Y2H), luciferase complementation assay (Split-LUC), and tobacco transient transformation demonstrated that SmbHLH93 has the ability to interact with SmMYB1 in order to enhance anthocyanin accumulation. This study will serve as a foundation for exploring the role of SmbHLH transcription factors in anthocyanin biosynthesis in the future.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.