Syringin inhibits the crosstalk between macrophages and fibroblast-like synoviocytes to treat rheumatoid arthritis via PDE4.

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Shan Cong, Ning Wang, Huan Pei, Zixuan Li, Yan Meng, Saimire Maimaitituersun, Xue Zhao, Rong Wan, Qianqian Wan, Li Luo, Yuhong Bian, Weibo Wen, Huantian Cui
{"title":"Syringin inhibits the crosstalk between macrophages and fibroblast-like synoviocytes to treat rheumatoid arthritis via PDE4.","authors":"Shan Cong, Ning Wang, Huan Pei, Zixuan Li, Yan Meng, Saimire Maimaitituersun, Xue Zhao, Rong Wan, Qianqian Wan, Li Luo, Yuhong Bian, Weibo Wen, Huantian Cui","doi":"10.1016/j.phymed.2025.156401","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Syringin (SRG) is well-known for its anti-inflammatory effects. However, its pharmacological mechanisms against rheumatoid arthritis (RA) are not fully understood.</p><p><strong>Materials and methods: </strong>We assessed the anti-RA effects of SRG using a collagen-induced arthritis (CIA) rat model. And, we employed single-cell RNA sequencing (scRNA-seq) to analyze the changes in cell types and gene expression in the synovial tissues. Building on these observations, we investigated the effects of SRG on M1 macrophage polarization and RA-fibroblast-like synoviocytes (FLS) proliferation.</p><p><strong>Results: </strong>Our findings highlighted the anti-RA effects of SRG on CIA rat. scRNA-seq of rat synovial tissues revealed significant changes in M1 and RA-FLS. Specifically, SRG decreased the levels of inflammatory factors in the supernatants of LPS and IFN-γ induced THP-1 cells and downregulated M1-polarized markers in these cells. Further analysis indicated that SRG's regulation of phosphodiesterase 4 (PDE4) and its associated factors was crucial for its anti-M1 polarization effects. Besides, we found that SRG inhibited the activation of FLS in vivo but showed no direct effects on RA-FLS in vitro. However, in RA-FLS, co-cultured with supernatant from SRG-treated M1-polarized THP-1 cells exhibited lower ability of cell proliferation and activation as compared to co-cultured with supernatant from M1-polarized THP-1 cells.</p><p><strong>Conclusion: </strong>By integrating scRNA-seq analysis with in vivo and in vitro validations, our study revealed that SRG achieved its anti-RA effects by blocking the interaction between macrophages and RA-FLS, with PDE4 playing a central role. This study may provide a novel research paradigm in studying the multi-cell regulatory mechanisms of natural compounds.</p>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"156401"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.phymed.2025.156401","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Syringin (SRG) is well-known for its anti-inflammatory effects. However, its pharmacological mechanisms against rheumatoid arthritis (RA) are not fully understood.

Materials and methods: We assessed the anti-RA effects of SRG using a collagen-induced arthritis (CIA) rat model. And, we employed single-cell RNA sequencing (scRNA-seq) to analyze the changes in cell types and gene expression in the synovial tissues. Building on these observations, we investigated the effects of SRG on M1 macrophage polarization and RA-fibroblast-like synoviocytes (FLS) proliferation.

Results: Our findings highlighted the anti-RA effects of SRG on CIA rat. scRNA-seq of rat synovial tissues revealed significant changes in M1 and RA-FLS. Specifically, SRG decreased the levels of inflammatory factors in the supernatants of LPS and IFN-γ induced THP-1 cells and downregulated M1-polarized markers in these cells. Further analysis indicated that SRG's regulation of phosphodiesterase 4 (PDE4) and its associated factors was crucial for its anti-M1 polarization effects. Besides, we found that SRG inhibited the activation of FLS in vivo but showed no direct effects on RA-FLS in vitro. However, in RA-FLS, co-cultured with supernatant from SRG-treated M1-polarized THP-1 cells exhibited lower ability of cell proliferation and activation as compared to co-cultured with supernatant from M1-polarized THP-1 cells.

Conclusion: By integrating scRNA-seq analysis with in vivo and in vitro validations, our study revealed that SRG achieved its anti-RA effects by blocking the interaction between macrophages and RA-FLS, with PDE4 playing a central role. This study may provide a novel research paradigm in studying the multi-cell regulatory mechanisms of natural compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信