Saponin-based adjuvant uptake and induction of antigen cross-presentation by CD11b+ dendritic cells and macrophages.

IF 6.9 1区 医学 Q1 IMMUNOLOGY
Lisa Gm Huis In 't Veld, Lenneke Am Cornelissen, Lune van den Bogaard, Marleen Ansems, Nataschja I Ho, Gosse J Adema
{"title":"Saponin-based adjuvant uptake and induction of antigen cross-presentation by CD11b+ dendritic cells and macrophages.","authors":"Lisa Gm Huis In 't Veld, Lenneke Am Cornelissen, Lune van den Bogaard, Marleen Ansems, Nataschja I Ho, Gosse J Adema","doi":"10.1038/s41541-024-01056-y","DOIUrl":null,"url":null,"abstract":"<p><p>Saponin-based adjuvants (SBAs) distinguish themselves as vaccine adjuvants by instigating a potent activation of CD8+ T cells. Previously, we discovered SBA's ability to induce cross-presentation in dendritic cells (DCs) leading to CD8+ T cell activation. Moreover, the MHCII<sup>lo</sup>CD11b<sup>hi</sup> bone marrow-derived DC (BMDC) subset was identified to be the most responsive DC subset to SBA treatment. To further investigate SBA's mode of action, labeling of SBAs was optimized with the fluorescent dye SP-DiIC<sub>18</sub>(3). Efficient uptake of SBAs occurs specifically by MHCII<sup>lo</sup>CD11b<sup>hi</sup> BMDCs and bone marrow-derived macrophages (BMDMs) in vitro and cDC2s and macrophages ex vivo. Furthermore, SBAs are primarily taken up by clathrin-mediated endocytosis and uptake induces lipid bodies and antigen translocation to the cytosol in MHCII<sup>lo</sup>CD11b<sup>hi</sup> BMDCs and BMDMs. Importantly, BMDMs treated with SBAs exhibit cross-presentation leading to potent CD8+ T cells activation. Our findings explain the potency of SBAs as vaccine adjuvants and contribute to vaccine development.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"15"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754886/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-01056-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saponin-based adjuvants (SBAs) distinguish themselves as vaccine adjuvants by instigating a potent activation of CD8+ T cells. Previously, we discovered SBA's ability to induce cross-presentation in dendritic cells (DCs) leading to CD8+ T cell activation. Moreover, the MHCIIloCD11bhi bone marrow-derived DC (BMDC) subset was identified to be the most responsive DC subset to SBA treatment. To further investigate SBA's mode of action, labeling of SBAs was optimized with the fluorescent dye SP-DiIC18(3). Efficient uptake of SBAs occurs specifically by MHCIIloCD11bhi BMDCs and bone marrow-derived macrophages (BMDMs) in vitro and cDC2s and macrophages ex vivo. Furthermore, SBAs are primarily taken up by clathrin-mediated endocytosis and uptake induces lipid bodies and antigen translocation to the cytosol in MHCIIloCD11bhi BMDCs and BMDMs. Importantly, BMDMs treated with SBAs exhibit cross-presentation leading to potent CD8+ T cells activation. Our findings explain the potency of SBAs as vaccine adjuvants and contribute to vaccine development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信