Injectable microspheres filled with copper-containing bioactive glass improve articular cartilage healing by regulating inflammation and recruiting stem cells.

IF 8.1 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-12-17 eCollection Date: 2025-01-01 DOI:10.1093/rb/rbae142
Hua Gao, Eryu Ning, Xiaoyu Zhang, Zhiqiang Shao, Dan Hu, Lang Bai, Hui Che, Yuefeng Hao
{"title":"Injectable microspheres filled with copper-containing bioactive glass improve articular cartilage healing by regulating inflammation and recruiting stem cells.","authors":"Hua Gao, Eryu Ning, Xiaoyu Zhang, Zhiqiang Shao, Dan Hu, Lang Bai, Hui Che, Yuefeng Hao","doi":"10.1093/rb/rbae142","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is a frequent chronic illness in orthopedics that poses a major hazard to patient health. <i>In situ</i> cell therapy is emerging as a therapeutic option, but its efficacy is influenced by both the inflammatory milieu and the amount of stem cells, limiting its use. In this study, we designed a novel injectable porous microsphere (PM) based on microfluidic technology that can support <i>in situ</i> mesenchymal stem cells (MSCs) therapy by combining polylactic-glycolic acid copolymer, kartogenin, polydopamine, stromal cell-derived factor-1, and copper-doped bioactive glass (CuBG). The <i>ex vivo</i> tests demonstrated that PMs@CuBG microspheres were biocompatible and facilitated the transformation of synovial macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotypes by releasing CuBG to reduce joint inflammation. At the same time, the microspheres are able to recruit MSCs into the joint cavity and encourage their differentiation into chondrocytes, thereby treating articular cartilage injury. The <i>in vivo</i> rat experimental results show that intra-articular injection of PMs@CuBG in rats with OA improves OARSI scores, aggrecan content and the ratio of col-2α-positive cells, indicating a reparative effect on damaged cartilage within the joint. As a result, PMs@CuBG microspheres are predicted to provide a novel and successful approach to <i>in situ</i> cell therapy for OA.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"12 ","pages":"rbae142"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751692/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae142","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a frequent chronic illness in orthopedics that poses a major hazard to patient health. In situ cell therapy is emerging as a therapeutic option, but its efficacy is influenced by both the inflammatory milieu and the amount of stem cells, limiting its use. In this study, we designed a novel injectable porous microsphere (PM) based on microfluidic technology that can support in situ mesenchymal stem cells (MSCs) therapy by combining polylactic-glycolic acid copolymer, kartogenin, polydopamine, stromal cell-derived factor-1, and copper-doped bioactive glass (CuBG). The ex vivo tests demonstrated that PMs@CuBG microspheres were biocompatible and facilitated the transformation of synovial macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotypes by releasing CuBG to reduce joint inflammation. At the same time, the microspheres are able to recruit MSCs into the joint cavity and encourage their differentiation into chondrocytes, thereby treating articular cartilage injury. The in vivo rat experimental results show that intra-articular injection of PMs@CuBG in rats with OA improves OARSI scores, aggrecan content and the ratio of col-2α-positive cells, indicating a reparative effect on damaged cartilage within the joint. As a result, PMs@CuBG microspheres are predicted to provide a novel and successful approach to in situ cell therapy for OA.

含铜生物活性玻璃填充的可注射微球通过调节炎症和招募干细胞来改善关节软骨愈合。
骨关节炎(OA)是骨科中一种常见的慢性疾病,严重危害患者健康。原位细胞疗法正在成为一种治疗选择,但其疗效受到炎症环境和干细胞数量的影响,限制了其使用。在这项研究中,我们设计了一种基于微流控技术的新型可注射多孔微球(PM),通过结合聚乳酸-乙醇酸共聚物、kartogenin、聚多巴胺、基质细胞衍生因子-1和铜掺杂生物活性玻璃(cug),可以支持原位间充质干细胞(MSCs)治疗。离体实验表明PMs@CuBG微球具有生物相容性,通过释放CuBG减轻关节炎症,促进滑膜巨噬细胞从促炎M1型向抗炎M2型转化。同时,微球能够将间充质干细胞招募到关节腔内,促使其分化为软骨细胞,从而治疗关节软骨损伤。大鼠体内实验结果显示,骨性关节炎大鼠关节内注射PMs@CuBG可提高OARSI评分、聚集蛋白含量和col-2α-阳性细胞比例,提示对关节内受损软骨具有修复作用。因此,PMs@CuBG微球有望为OA原位细胞治疗提供一种新颖而成功的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信