{"title":"Targeted therapy for glioblastoma utilizing hyaluronic acid-engineered liposomes for adriamycin delivery.","authors":"Yanping Wang, Peiyan Qi, Shenbao Shi, Cong Pang, Weijie Wang, Dazhao Fang","doi":"10.1088/1361-6528/adacef","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential. In this study, we constructed a nanodrug system (HA-Liposome@Dox) based on hyaluronic acid-engineered liposomes delivering adriamycin to target GBM. The system efficiently encapsulated Dox inside the liposomes through a hydrophilic-hydrophobic interaction mechanism, and the resulting HA-Liposome@Dox exhibited excellent loading efficacy, attributed to its uniform particle size distribution and negatively charged surface. Further evaluation revealed that HA-Liposome@Dox possessed excellent stability and safety and could promote the effective uptake of drug particles by CD44-overexpressing tumor cells, thus exerting a more potent cell-killing effect. Notably, in the treatment of GBM, HA-Liposome@Dox demonstrated significantly greater tumor growth inhibition compared to free Dox and prolonged the survival of tumor-bearing mice. Taken together, the present study not only verified the feasibility of HA-Liposome@Dox as an effective therapeutic tool against GBM and other CD44-positively expressing tumors, but also opened a promising new avenue for the clinical treatment of this type of refractory malignancies.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adacef","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential. In this study, we constructed a nanodrug system (HA-Liposome@Dox) based on hyaluronic acid-engineered liposomes delivering adriamycin to target GBM. The system efficiently encapsulated Dox inside the liposomes through a hydrophilic-hydrophobic interaction mechanism, and the resulting HA-Liposome@Dox exhibited excellent loading efficacy, attributed to its uniform particle size distribution and negatively charged surface. Further evaluation revealed that HA-Liposome@Dox possessed excellent stability and safety and could promote the effective uptake of drug particles by CD44-overexpressing tumor cells, thus exerting a more potent cell-killing effect. Notably, in the treatment of GBM, HA-Liposome@Dox demonstrated significantly greater tumor growth inhibition compared to free Dox and prolonged the survival of tumor-bearing mice. Taken together, the present study not only verified the feasibility of HA-Liposome@Dox as an effective therapeutic tool against GBM and other CD44-positively expressing tumors, but also opened a promising new avenue for the clinical treatment of this type of refractory malignancies.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.