Insights into the role of phosphorylation on microtubule crosslinking by PRC1.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Ellinor Tai, Austin Henglein, Angus Alfieri, Gauri Saxena, Scott Forth
{"title":"Insights into the role of phosphorylation on microtubule crosslinking by PRC1.","authors":"Ellinor Tai, Austin Henglein, Angus Alfieri, Gauri Saxena, Scott Forth","doi":"10.1091/mbc.E24-12-0565","DOIUrl":null,"url":null,"abstract":"<p><p>The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The crosslinking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase. How these biochemical changes to specific residues regulate its function and ability to organize bundles has been unclear. Here, we perform biophysical analyses on microtubule networks crosslinked by two PRC1 constructs, one a wild-type reflecting a dephosphorylated state, and one phosphomimetic construct with two threonine to glutamic acid substitutions near PRC1's microtubule binding domain. We find that the wild-type construct builds longer and larger bundles that form more rapidly and are much more resistant to mechanical disruption than the phosphomimetic PRC1. Interestingly, microtubule pairs organized by both constructs behave similarly within the same assays. Our results suggest that phosphorylation of PRC1 in metaphase could tune the protein to stabilize smaller and more flexible bundles, while removal of these PTMs in anaphase would promote the assembly of larger, more mechanically robust bundles to resist chromosome and pole separation forces at the spindle midzone.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24120565"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-12-0565","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mitotic spindle is composed of distinct networks of microtubules, including interpolar bundles that can bridge sister kinetochore fibers and bundles that organize the spindle midzone in anaphase. The crosslinking protein PRC1 can mediate such bundling interactions between antiparallel microtubules. PRC1 is a substrate of mitotic kinases including CDK/cyclin-B, suggesting that it can be phosphorylated in metaphase and dephosphorylated in anaphase. How these biochemical changes to specific residues regulate its function and ability to organize bundles has been unclear. Here, we perform biophysical analyses on microtubule networks crosslinked by two PRC1 constructs, one a wild-type reflecting a dephosphorylated state, and one phosphomimetic construct with two threonine to glutamic acid substitutions near PRC1's microtubule binding domain. We find that the wild-type construct builds longer and larger bundles that form more rapidly and are much more resistant to mechanical disruption than the phosphomimetic PRC1. Interestingly, microtubule pairs organized by both constructs behave similarly within the same assays. Our results suggest that phosphorylation of PRC1 in metaphase could tune the protein to stabilize smaller and more flexible bundles, while removal of these PTMs in anaphase would promote the assembly of larger, more mechanically robust bundles to resist chromosome and pole separation forces at the spindle midzone.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信