Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Antonio Balena, Marco Bianco, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnolo, Marco Pisanello, Filippo Pisano, Bernardo L Sabatini, Massimo De Vittorio, Ferruccio Pisanello
{"title":"Fabrication of nonplanar tapered fibers to integrate optical and electrical signals for neural interfaces in vivo.","authors":"Antonio Balena, Marco Bianco, Maria Samuela Andriani, Cinzia Montinaro, Barbara Spagnolo, Marco Pisanello, Filippo Pisano, Bernardo L Sabatini, Massimo De Vittorio, Ferruccio Pisanello","doi":"10.1038/s41596-024-01105-9","DOIUrl":null,"url":null,"abstract":"<p><p>Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes. Fibertrodes require the application of a set of planar microfabrication techniques to a nonplanar system with low and nonconstant curvature radius. Here we develop a process based on multiple conformal depositions, nonplanar two-photon lithography and chemical wet etching steps to obtain metallic patterns on the highly curved surface of the fiber taper. We detail the manufacturing, encapsulation and back end of the fibertrodes. The design of the probe can be adapted for different experimental requirements. Using the optical setup design, it is possible to perform angle selective light coupling with the fibertrodes and their implantation and use in vivo. The fabrication of fibertrodes is estimated to require 5-9 d. Nonetheless, due to the high scalability of a large part of the protocol, the manufacture of multiple fibertrodes simultaneously substantially reduces the required time for each probe. The procedure is suitable for users with expertise in microfabrication of electronics and neural recordings.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01105-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Implantable multifunctional probes have transformed neuroscience research, offering access to multifaceted brain activity that was previously unattainable. Typically, simultaneous access to both optical and electrical signals requires separate probes, while their integration into a single device can result in the emergence of photogenerated electrical artifacts, affecting the quality of high-frequency neural recordings. Among the nontrivial strategies aimed at the realization of an implantable multifunctional interface, the integration of optical and electrical capabilities on a single, minimally invasive, tapered optical fiber probe has been recently demonstrated using fibertrodes. Fibertrodes require the application of a set of planar microfabrication techniques to a nonplanar system with low and nonconstant curvature radius. Here we develop a process based on multiple conformal depositions, nonplanar two-photon lithography and chemical wet etching steps to obtain metallic patterns on the highly curved surface of the fiber taper. We detail the manufacturing, encapsulation and back end of the fibertrodes. The design of the probe can be adapted for different experimental requirements. Using the optical setup design, it is possible to perform angle selective light coupling with the fibertrodes and their implantation and use in vivo. The fabrication of fibertrodes is estimated to require 5-9 d. Nonetheless, due to the high scalability of a large part of the protocol, the manufacture of multiple fibertrodes simultaneously substantially reduces the required time for each probe. The procedure is suitable for users with expertise in microfabrication of electronics and neural recordings.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信