An AI-Digital Pathology Algorithm Predicts Survival after Radical Prostatectomy from the PLCO Trial.

IF 5.9 2区 医学 Q1 UROLOGY & NEPHROLOGY
Eric V Li, Yi Ren, Jacqueline Griffin, Colin Han, Rikiya Yamashita, Akinori Mitani, Ruoji Zhou, Huei-Chung Huang, Ximing Yang, Felix Y Feng, Andre Esteva, Hiten D Patel, Edward M Schaeffer, Lee A D Cooper, Ashley E Ross
{"title":"An AI-Digital Pathology Algorithm Predicts Survival after Radical Prostatectomy from the PLCO Trial.","authors":"Eric V Li, Yi Ren, Jacqueline Griffin, Colin Han, Rikiya Yamashita, Akinori Mitani, Ruoji Zhou, Huei-Chung Huang, Ximing Yang, Felix Y Feng, Andre Esteva, Hiten D Patel, Edward M Schaeffer, Lee A D Cooper, Ashley E Ross","doi":"10.1097/JU.0000000000004435","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Clinical variables alone have limited ability to determine which patients will have recurrence after radical prostatectomy (RP). We evaluated the ability of locked multimodal artificial intelligence (MMAI) algorithms trained on prostate biopsy specimens to predict prostate cancer specific mortality (PCSM) and overall survival (OS) among patients undergoing radical prostatectomy with digitized RP specimens.</p><p><strong>Materials and methods: </strong>The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Randomized Controlled Trial randomized subjects from 1993-2001 to cancer screening or control. A subset of patients who underwent RP with available digitized histopathological images and subsequent survival data were identified. Distant metastasis (DM) and PCSM MMAIs originally trained on biopsy slides for patients undergoing radiation were evaluated for prediction of PCSM and OS. Cox proportional hazards modeling and Kaplan Meier survival curve analysis were utilized.</p><p><strong>Results: </strong>1032 patients who underwent RP with median follow up of 17 years (IQR 14.3, 19.3 years) were identified. MMAI algorithms for PCSM and DM both predicted PCSM (HR 2.31, 95% confidence interval [CI] 1.6-3.35, p<0.001, and HR 1.96, 95% CI 1.35-2.85, p<0.001, respectively). Similarly, DM and PCSM MMAI predicted OS (HR 1.22, 95% CI 1.01-1.47, p=0.04 and HR 1.19, 95% CI 1.02-1.4, p=0.03).</p><p><strong>Conclusions: </strong>Locked MMAI algorithms previously developed and validated on biopsy specimens from patients undergoing radiation for prostate cancer successfully predicted clinical outcomes when applied to RP specimens from patients treated with surgery. MMAI models and other biomarkers may help select patients who may benefit from post-operative treatment intensification with androgen deprivation therapy or radiation.</p>","PeriodicalId":17471,"journal":{"name":"Journal of Urology","volume":" ","pages":"101097JU0000000000004435"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/JU.0000000000004435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Clinical variables alone have limited ability to determine which patients will have recurrence after radical prostatectomy (RP). We evaluated the ability of locked multimodal artificial intelligence (MMAI) algorithms trained on prostate biopsy specimens to predict prostate cancer specific mortality (PCSM) and overall survival (OS) among patients undergoing radical prostatectomy with digitized RP specimens.

Materials and methods: The Prostate, Lung, Colorectal, and Ovarian Cancer Screening Randomized Controlled Trial randomized subjects from 1993-2001 to cancer screening or control. A subset of patients who underwent RP with available digitized histopathological images and subsequent survival data were identified. Distant metastasis (DM) and PCSM MMAIs originally trained on biopsy slides for patients undergoing radiation were evaluated for prediction of PCSM and OS. Cox proportional hazards modeling and Kaplan Meier survival curve analysis were utilized.

Results: 1032 patients who underwent RP with median follow up of 17 years (IQR 14.3, 19.3 years) were identified. MMAI algorithms for PCSM and DM both predicted PCSM (HR 2.31, 95% confidence interval [CI] 1.6-3.35, p<0.001, and HR 1.96, 95% CI 1.35-2.85, p<0.001, respectively). Similarly, DM and PCSM MMAI predicted OS (HR 1.22, 95% CI 1.01-1.47, p=0.04 and HR 1.19, 95% CI 1.02-1.4, p=0.03).

Conclusions: Locked MMAI algorithms previously developed and validated on biopsy specimens from patients undergoing radiation for prostate cancer successfully predicted clinical outcomes when applied to RP specimens from patients treated with surgery. MMAI models and other biomarkers may help select patients who may benefit from post-operative treatment intensification with androgen deprivation therapy or radiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Urology
Journal of Urology 医学-泌尿学与肾脏学
CiteScore
11.50
自引率
7.60%
发文量
3746
审稿时长
2-3 weeks
期刊介绍: The Official Journal of the American Urological Association (AUA), and the most widely read and highly cited journal in the field, The Journal of Urology® brings solid coverage of the clinically relevant content needed to stay at the forefront of the dynamic field of urology. This premier journal presents investigative studies on critical areas of research and practice, survey articles providing short condensations of the best and most important urology literature worldwide, and practice-oriented reports on significant clinical observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信