Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe2 membranes.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION
Bo Xu, Zejuan Zhang, Jiaze Qin, Jiaqi Wu, Luming Wang, Jiankai Zhu, Chenyin Jiao, Wanli Zhang, Juan Xia, Zenghui Wang
{"title":"Dynamic tuning of terahertz atomic lattice vibration via cross-scale mode coupling to nanomechanical resonance in WSe<sub>2</sub> membranes.","authors":"Bo Xu, Zejuan Zhang, Jiaze Qin, Jiaqi Wu, Luming Wang, Jiankai Zhu, Chenyin Jiao, Wanli Zhang, Juan Xia, Zenghui Wang","doi":"10.1038/s41378-024-00827-w","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe<sub>2</sub>), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe<sub>2</sub> NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe<sub>2</sub> NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"18"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00827-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoelectromechanical systems (NEMS) based on atomically-thin tungsten diselenide (WSe2), benefiting from the excellent material properties and the mechanical degree of freedom, offer an ideal platform for studying and exploiting dynamic strain engineering and cross-scale vibration coupling in two-dimensional (2D) crystals. However, such opportunity has remained largely unexplored for WSe2 NEMS, impeding exploration of exquisite physical processes and realization of novel device functions. Here, we demonstrate dynamic coupling between atomic lattice vibration and nanomechanical resonances in few-layer WSe2 NEMS. Using a custom-built setup capable of simultaneously detecting Raman and motional signals, we accomplish cross-scale mode coupling between the THz crystal phonon and MHz structural vibration, achieving GHz frequency tuning in the atomic lattice modes with a dynamic gauge factor of 61.9, the best among all 2D crystals reported to date. Our findings show that such 2D NEMS offer great promises for exploring cross-scale physics in atomically-thin semiconductors.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信