Finite Element Analysis of Functionally Loaded Subperiosteal Implants Evaluated on a Realistic Model Reproducing Severe Atrophic Jaws.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Gerardo Pellegrino, Maryia Karaban, Veronica Scalchi, Marco Urbani, Amerigo Giudice, Carlo Barausse, Pietro Felice
{"title":"Finite Element Analysis of Functionally Loaded Subperiosteal Implants Evaluated on a Realistic Model Reproducing Severe Atrophic Jaws.","authors":"Gerardo Pellegrino, Maryia Karaban, Veronica Scalchi, Marco Urbani, Amerigo Giudice, Carlo Barausse, Pietro Felice","doi":"10.3390/mps8010008","DOIUrl":null,"url":null,"abstract":"<p><p>Implant-supported prosthetic rehabilitation for patients with severely atrophic jaws is challenging due to complex anatomical considerations and the limitations of conventional augmentation techniques. This study explores the potential of subperiosteal (juxta-osseous) implants as an alternative solution, using finite element analysis (FEA) to evaluate mechanical performance. Realistic jaw models, developed from radiographic data, are utilized to simulate various implant configurations and load scenarios. Results indicate that different screw placements, implant designs, and structural modifications can significantly influence stress distribution and biomechanical behavior. Upper and lower jaw models were assessed under multiple load conditions to determine optimal configurations. Findings suggest that strategic adjustments, such as adding posterior screws or altering implant connections, can enhance load distribution and reduce stress concentration, particularly in critical areas. Tensile loads in critical bone areas near cortical fixing screws exceeded 50 MPa under anterior loading, while configurations with larger load distributions reduced stress on both implant and bone. The study provides evidence-based insights into optimizing subperiosteal implant design to improve stability, longevity, and patient outcomes.</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Implant-supported prosthetic rehabilitation for patients with severely atrophic jaws is challenging due to complex anatomical considerations and the limitations of conventional augmentation techniques. This study explores the potential of subperiosteal (juxta-osseous) implants as an alternative solution, using finite element analysis (FEA) to evaluate mechanical performance. Realistic jaw models, developed from radiographic data, are utilized to simulate various implant configurations and load scenarios. Results indicate that different screw placements, implant designs, and structural modifications can significantly influence stress distribution and biomechanical behavior. Upper and lower jaw models were assessed under multiple load conditions to determine optimal configurations. Findings suggest that strategic adjustments, such as adding posterior screws or altering implant connections, can enhance load distribution and reduce stress concentration, particularly in critical areas. Tensile loads in critical bone areas near cortical fixing screws exceeded 50 MPa under anterior loading, while configurations with larger load distributions reduced stress on both implant and bone. The study provides evidence-based insights into optimizing subperiosteal implant design to improve stability, longevity, and patient outcomes.

骨膜下植入物功能载荷的有限元分析,用于模拟严重颌骨萎缩。
由于复杂的解剖学考虑和传统增强技术的局限性,严重颌骨萎缩患者的种植体支持假肢康复具有挑战性。本研究利用有限元分析(FEA)评估机械性能,探讨骨膜下(骨旁)种植体作为替代方案的潜力。现实颌模型,从x线摄影数据开发,用于模拟各种种植体配置和负载情况。结果表明,不同的螺钉放置、种植体设计和结构修改可以显著影响应力分布和生物力学行为。在多种载荷条件下对上下颌模型进行了评估,以确定最佳配置。研究结果表明,战略性调整,如增加后路螺钉或改变种植体连接,可以增强负荷分布,减少应力集中,特别是在关键区域。在前路载荷下,皮质固定螺钉附近关键骨区域的拉伸载荷超过50 MPa,而较大载荷分布的配置减少了种植体和骨的应力。该研究为优化骨膜下种植体设计提供了基于证据的见解,以提高稳定性、寿命和患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信