Evaluation of Drug-Polymer and Drug-Drug Interaction in Cellulosic Multi-Drug Delivery Matrices.

IF 2.3 Q3 BIOCHEMICAL RESEARCH METHODS
Abdullah Isreb, Mohamed A Alhnan, Abdulrahman Mkia, Khaled Al-Jammal, Abdallah M Yaghi, Enoche Florence Oga, Peter Timmins, Michael Bonner, Robert T Forbes
{"title":"Evaluation of Drug-Polymer and Drug-Drug Interaction in Cellulosic Multi-Drug Delivery Matrices.","authors":"Abdullah Isreb, Mohamed A Alhnan, Abdulrahman Mkia, Khaled Al-Jammal, Abdallah M Yaghi, Enoche Florence Oga, Peter Timmins, Michael Bonner, Robert T Forbes","doi":"10.3390/mps8010004","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-drug delivery systems have gained increasing interest from the pharmaceutical industry. Alongside this is the interest in amorphous solid dispersions as an approach to achieve effective oral delivery of compounds with solubility-limited bioavailability. Despite this, there is limited information regarding predicting the behavior of two or more drugs (in amorphous forms) in a polymeric carrier and whether molecular interactions between the compounds, between each compound, and if the polymer have any effect on the physical properties of the system. This work studies the interaction between model drug combinations (two of ibuprofen, malonic acid, flurbiprofen, or naproxen) dispersed in a polymeric matrix of hypromellose acetate succinate (HPMCAS) using a solvent evaporation technique. Hildebrand and Hansen calculations were used to predict the miscibility of compounds as long as the difference in their solubility parameter values was not greater than 7 MPa<sup>1/2</sup>. It was observed that the selected APIs (malonic acid, ibuprofen, naproxen, and flurbiprofen) were miscible within the formed polymeric matrix. Adding the API caused depression in the Tg of the polymer to certain concentrations (17%, 23%, 13%) for polymeric matrices loaded with malonic acid, ibuprofen, and naproxen, respectively. Above this, large crystals started to form, and phase separation was seen. Adding two APIs to the same matrix resulted in reducing the saturation concentration of one of the APIs. A trend was observed and linked to Hildebrand and Hansen solubility parameters (HSP).</p>","PeriodicalId":18715,"journal":{"name":"Methods and Protocols","volume":"8 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11755489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mps8010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-drug delivery systems have gained increasing interest from the pharmaceutical industry. Alongside this is the interest in amorphous solid dispersions as an approach to achieve effective oral delivery of compounds with solubility-limited bioavailability. Despite this, there is limited information regarding predicting the behavior of two or more drugs (in amorphous forms) in a polymeric carrier and whether molecular interactions between the compounds, between each compound, and if the polymer have any effect on the physical properties of the system. This work studies the interaction between model drug combinations (two of ibuprofen, malonic acid, flurbiprofen, or naproxen) dispersed in a polymeric matrix of hypromellose acetate succinate (HPMCAS) using a solvent evaporation technique. Hildebrand and Hansen calculations were used to predict the miscibility of compounds as long as the difference in their solubility parameter values was not greater than 7 MPa1/2. It was observed that the selected APIs (malonic acid, ibuprofen, naproxen, and flurbiprofen) were miscible within the formed polymeric matrix. Adding the API caused depression in the Tg of the polymer to certain concentrations (17%, 23%, 13%) for polymeric matrices loaded with malonic acid, ibuprofen, and naproxen, respectively. Above this, large crystals started to form, and phase separation was seen. Adding two APIs to the same matrix resulted in reducing the saturation concentration of one of the APIs. A trend was observed and linked to Hildebrand and Hansen solubility parameters (HSP).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Methods and Protocols
Methods and Protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
85
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信