Deep learning-based image classification reveals heterogeneous execution of cell death fates during viral infection.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Edoardo Centofanti, Alon Oyler-Yaniv, Jennifer Oyler-Yaniv
{"title":"Deep learning-based image classification reveals heterogeneous execution of cell death fates during viral infection.","authors":"Edoardo Centofanti, Alon Oyler-Yaniv, Jennifer Oyler-Yaniv","doi":"10.1091/mbc.E24-10-0438","DOIUrl":null,"url":null,"abstract":"<p><p>Cell fate decisions, such as proliferation, differentiation, and death, are driven by complex molecular interactions and signaling cascades. While significant progress has been made in understanding the molecular determinants of these processes, historically, cell fate transitions were identified through light microscopy that focused on changes in cell morphology and function. Modern techniques have shifted towards probing molecular effectors to quantify these transitions, offering more precise quantification and mechanistic understanding. However, challenges remain in cases where the molecular signals are ambiguous, complicating the assignment of cell fate. During viral infection, programmed cell death (PCD) pathways, including apoptosis, necroptosis, and pyroptosis, exhibit complex signaling and molecular crosstalk. This can lead to simultaneous activation of multiple PCD pathways, which confounds assignment of cell fate based on molecular information alone. To address this challenge, we employed deep learning-based image classification of dying cells to analyze PCD in single Herpes Simplex Virus-1 (HSV-1)-infected cells. Our approach reveals that despite heterogeneous activation of signaling, individual cells adopt predominantly prototypical death morphologies. Nevertheless, PCD is executed heterogeneously within a uniform population of virus-infected cells and varies over time. These findings demonstrate that image-based phenotyping can provide valuable insights into cell fate decisions, complementing molecular assays. [Media: see text] [Media: see text] [Media: see text] [Media: see text].</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24100438"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-10-0438","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cell fate decisions, such as proliferation, differentiation, and death, are driven by complex molecular interactions and signaling cascades. While significant progress has been made in understanding the molecular determinants of these processes, historically, cell fate transitions were identified through light microscopy that focused on changes in cell morphology and function. Modern techniques have shifted towards probing molecular effectors to quantify these transitions, offering more precise quantification and mechanistic understanding. However, challenges remain in cases where the molecular signals are ambiguous, complicating the assignment of cell fate. During viral infection, programmed cell death (PCD) pathways, including apoptosis, necroptosis, and pyroptosis, exhibit complex signaling and molecular crosstalk. This can lead to simultaneous activation of multiple PCD pathways, which confounds assignment of cell fate based on molecular information alone. To address this challenge, we employed deep learning-based image classification of dying cells to analyze PCD in single Herpes Simplex Virus-1 (HSV-1)-infected cells. Our approach reveals that despite heterogeneous activation of signaling, individual cells adopt predominantly prototypical death morphologies. Nevertheless, PCD is executed heterogeneously within a uniform population of virus-infected cells and varies over time. These findings demonstrate that image-based phenotyping can provide valuable insights into cell fate decisions, complementing molecular assays. [Media: see text] [Media: see text] [Media: see text] [Media: see text].

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信