Jin-Xin Huang , Rui Yang , Huan Long , Jie Kong , Guo-Qiang Shao , Fei Xiong
{"title":"Dual-drug loaded chondroitin sulfate embolization beads enhance TACE therapy for HCC by integrating embolization, chemotherapy, and anti-angiogenesis","authors":"Jin-Xin Huang , Rui Yang , Huan Long , Jie Kong , Guo-Qiang Shao , Fei Xiong","doi":"10.1016/j.mtbio.2024.101419","DOIUrl":null,"url":null,"abstract":"<div><div>Hepatocellular carcinoma (HCC) is a major public health threat due to its high incidence and mortality rates. Transcatheter arterial chemoembolization (TACE), the primary treatment for intermediate-to-advanced hepatocellular carcinoma (HCC), commonly utilizes embolic agents loaded with anthracycline-based cytotoxic drugs. Post-TACE, the hypoxic microenvironment in the tumor induced by embolization stimulates the formation of new blood vessels, potentially leading to revascularization and diminishing TACE's efficacy. In clinical practice, combined therapy for liver cancer using TACE and oral targeted drugs often encounters the limitation that targeted drugs cannot efficiently reach the tumor site following TACE. We have developed chondroitin sulfate microspheres (CMs) capable of encapsulating both the cytotoxic drug idarubicin (Ida) and the vascular inhibitor Lenvatinib (Len), thereby achieving a triple therapeutic effect on liver cancer: embolic starvation, drug toxicity, and efficient inhibition of neovascularization.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"30 ","pages":"Article 101419"},"PeriodicalIF":8.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004800","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a major public health threat due to its high incidence and mortality rates. Transcatheter arterial chemoembolization (TACE), the primary treatment for intermediate-to-advanced hepatocellular carcinoma (HCC), commonly utilizes embolic agents loaded with anthracycline-based cytotoxic drugs. Post-TACE, the hypoxic microenvironment in the tumor induced by embolization stimulates the formation of new blood vessels, potentially leading to revascularization and diminishing TACE's efficacy. In clinical practice, combined therapy for liver cancer using TACE and oral targeted drugs often encounters the limitation that targeted drugs cannot efficiently reach the tumor site following TACE. We have developed chondroitin sulfate microspheres (CMs) capable of encapsulating both the cytotoxic drug idarubicin (Ida) and the vascular inhibitor Lenvatinib (Len), thereby achieving a triple therapeutic effect on liver cancer: embolic starvation, drug toxicity, and efficient inhibition of neovascularization.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).