Adhesive polyelectrolyte coating through UV-triggered polymerization on PLGA particles for enhanced drug delivery to inflammatory intestinal mucosa.

IF 10.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jie Zhang, Yi-Jing Yin, Xing-Wang Wang, Wei-Qi Lu, Zhao-Yang Chen, Chao-Hui Yu, Ke-Feng Ren, Cheng-Fu Xu
{"title":"Adhesive polyelectrolyte coating through UV-triggered polymerization on PLGA particles for enhanced drug delivery to inflammatory intestinal mucosa.","authors":"Jie Zhang, Yi-Jing Yin, Xing-Wang Wang, Wei-Qi Lu, Zhao-Yang Chen, Chao-Hui Yu, Ke-Feng Ren, Cheng-Fu Xu","doi":"10.1186/s12951-024-03066-3","DOIUrl":null,"url":null,"abstract":"<p><p>Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS). The negatively charged carboxyl groups effectively interact with the positively charged focal mucosa, and the NHS ester groups form the covalent bonds with the amino groups, thereby synergically enhancing the adhesion of the PLGA particles to the focal mucosa. Our findings reveal that, compared to the naked particles, the PAA-NHS coating increases the adhesion of particles to the inflammatory intestine. In a dextran sulfate sodium-induced acute colitis mouse model, the TAC/PLGA particles with PAA-NHS coating exhibits substantial retention of TAC within the inflammatory intestine, enhancing drug delivery efficiency and therapeutic effects. This approach holds promise for UC management, minimizing systemic side effects and optimizing therapeutic outcomes.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"32"},"PeriodicalIF":10.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-03066-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS). The negatively charged carboxyl groups effectively interact with the positively charged focal mucosa, and the NHS ester groups form the covalent bonds with the amino groups, thereby synergically enhancing the adhesion of the PLGA particles to the focal mucosa. Our findings reveal that, compared to the naked particles, the PAA-NHS coating increases the adhesion of particles to the inflammatory intestine. In a dextran sulfate sodium-induced acute colitis mouse model, the TAC/PLGA particles with PAA-NHS coating exhibits substantial retention of TAC within the inflammatory intestine, enhancing drug delivery efficiency and therapeutic effects. This approach holds promise for UC management, minimizing systemic side effects and optimizing therapeutic outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信