Xianhui Shi, Rieta Gols, Jetske G de Boer, Jeffrey A Harvey
{"title":"Host size overrides maternal effects on the development of a secondary hyperparasitoid wasp.","authors":"Xianhui Shi, Rieta Gols, Jetske G de Boer, Jeffrey A Harvey","doi":"10.1093/jisesa/ieaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Unraveling the numerous factors that drive phenotypic variation in trait expression among animals has long presented a significant challenge. Whereas traits like growth and adult size are often heritable and are passed on from one generation to the next, these can be significantly affected by the quality and quantity of resources provided by one or both parents to their offspring. In many vertebrates, such as birds and mammals, parents raise their young until adult, providing food, shelter, and protection. On the other hand, in insects, there is often little or no parental care, and the young are left to fend for themselves. Despite that, some insects can enhance the growth of their offspring. In parasitoid wasps, for example, mothers inject biochemical factors, including venoms, teratocytes, and virus-like particles into the host that increase host quality by regulating the nutritional milieu. However, it is not known whether maternal size is positively correlated with host regulation. Here, we evaluate maternal and host size-related effects on the development of an asexually reproducing (= female only) secondary idiobiont ectoparasitoid, Gelis agilis on pre-pupae in cocoons of its host, the primary parasitoid, Cotesia glomerata. Females G. agilis from 2 adult size classes, \"small\" (mean 0.7 mg) or \"large\" (mean 1.2 mg), were allowed to parasitize cocoons of differing size along a continuum from ~1.2 mg to ~4.0 mg, and the body size and development time of their offspring were measured. In both body size classes of G. agilis mothers, there was a strong correlation between host size and offspring size. However, there was no effect of adult G. agilis size on this parameter: for a given host size, the size of G. agilis offspring did not differ between small and large mothers. Our results reveal that host quality is mostly pre-determined, irrespective of maternal size.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756310/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf004","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Unraveling the numerous factors that drive phenotypic variation in trait expression among animals has long presented a significant challenge. Whereas traits like growth and adult size are often heritable and are passed on from one generation to the next, these can be significantly affected by the quality and quantity of resources provided by one or both parents to their offspring. In many vertebrates, such as birds and mammals, parents raise their young until adult, providing food, shelter, and protection. On the other hand, in insects, there is often little or no parental care, and the young are left to fend for themselves. Despite that, some insects can enhance the growth of their offspring. In parasitoid wasps, for example, mothers inject biochemical factors, including venoms, teratocytes, and virus-like particles into the host that increase host quality by regulating the nutritional milieu. However, it is not known whether maternal size is positively correlated with host regulation. Here, we evaluate maternal and host size-related effects on the development of an asexually reproducing (= female only) secondary idiobiont ectoparasitoid, Gelis agilis on pre-pupae in cocoons of its host, the primary parasitoid, Cotesia glomerata. Females G. agilis from 2 adult size classes, "small" (mean 0.7 mg) or "large" (mean 1.2 mg), were allowed to parasitize cocoons of differing size along a continuum from ~1.2 mg to ~4.0 mg, and the body size and development time of their offspring were measured. In both body size classes of G. agilis mothers, there was a strong correlation between host size and offspring size. However, there was no effect of adult G. agilis size on this parameter: for a given host size, the size of G. agilis offspring did not differ between small and large mothers. Our results reveal that host quality is mostly pre-determined, irrespective of maternal size.
期刊介绍:
The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.