Discrimination of Radiologists' Experience Level Using Eye-Tracking Technology and Machine Learning: Case Study.

IF 2 Q3 HEALTH CARE SCIENCES & SERVICES
Stanford Martinez, Carolina Ramirez-Tamayo, Syed Hasib Akhter Faruqui, Kal Clark, Adel Alaeddini, Nicholas Czarnek, Aarushi Aggarwal, Sahra Emamzadeh, Jeffrey R Mock, Edward J Golob
{"title":"Discrimination of Radiologists' Experience Level Using Eye-Tracking Technology and Machine Learning: Case Study.","authors":"Stanford Martinez, Carolina Ramirez-Tamayo, Syed Hasib Akhter Faruqui, Kal Clark, Adel Alaeddini, Nicholas Czarnek, Aarushi Aggarwal, Sahra Emamzadeh, Jeffrey R Mock, Edward J Golob","doi":"10.2196/53928","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns. This discrepancy can interfere with quality improvement interventions and negatively impact patient care.</p><p><strong>Objective: </strong>The objective of this study is to provide an alternative method for distinguishing between radiologists by means of captured eye-tracking data such that the raw gaze (or processed fixation data) can be used to discriminate users based on subconscious behavior in visual inspection.</p><p><strong>Methods: </strong>We present a novel discretized feature encoding based on spatiotemporal binning of fixation data for efficient geometric alignment and temporal ordering of eye movement when reading chest x-rays. The encoded features of the eye-fixation data are used by machine learning classifiers to discriminate between faculty and trainee radiologists. A clinical trial case study was conducted using metrics such as the area under the curve, accuracy, F<sub>1</sub>-score, sensitivity, and specificity to evaluate the discriminability between the 2 groups regarding their level of experience. The classification performance was then compared with state-of-the-art methodologies. In addition, a repeatability experiment using a separate dataset, experimental protocol, and eye tracker was performed with 8 participants to evaluate the robustness of the proposed approach.</p><p><strong>Results: </strong>The numerical results from both experiments demonstrate that classifiers using the proposed feature encoding methods outperform the current state-of-the-art in differentiating between radiologists in terms of experience level. An average performance gain of 6.9% is observed compared with traditional features while classifying experience levels of radiologists. This gain in accuracy is also substantial across different eye tracker-collected datasets, with improvements of 6.41% using the Tobii eye tracker and 7.29% using the EyeLink eye tracker. These results signify the potential impact of the proposed method for identifying radiologists' level of expertise and those who would benefit from additional training.</p><p><strong>Conclusions: </strong>The effectiveness of the proposed spatiotemporal discretization approach, validated across diverse datasets and various classification metrics, underscores its potential for objective evaluation, informing targeted interventions and training strategies in radiology. This research advances reliable assessment tools, addressing challenges in perception-related errors to enhance patient care outcomes.</p>","PeriodicalId":14841,"journal":{"name":"JMIR Formative Research","volume":"9 ","pages":"e53928"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Formative Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/53928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Perception-related errors comprise most diagnostic mistakes in radiology. To mitigate this problem, radiologists use personalized and high-dimensional visual search strategies, otherwise known as search patterns. Qualitative descriptions of these search patterns, which involve the physician verbalizing or annotating the order he or she analyzes the image, can be unreliable due to discrepancies in what is reported versus the actual visual patterns. This discrepancy can interfere with quality improvement interventions and negatively impact patient care.

Objective: The objective of this study is to provide an alternative method for distinguishing between radiologists by means of captured eye-tracking data such that the raw gaze (or processed fixation data) can be used to discriminate users based on subconscious behavior in visual inspection.

Methods: We present a novel discretized feature encoding based on spatiotemporal binning of fixation data for efficient geometric alignment and temporal ordering of eye movement when reading chest x-rays. The encoded features of the eye-fixation data are used by machine learning classifiers to discriminate between faculty and trainee radiologists. A clinical trial case study was conducted using metrics such as the area under the curve, accuracy, F1-score, sensitivity, and specificity to evaluate the discriminability between the 2 groups regarding their level of experience. The classification performance was then compared with state-of-the-art methodologies. In addition, a repeatability experiment using a separate dataset, experimental protocol, and eye tracker was performed with 8 participants to evaluate the robustness of the proposed approach.

Results: The numerical results from both experiments demonstrate that classifiers using the proposed feature encoding methods outperform the current state-of-the-art in differentiating between radiologists in terms of experience level. An average performance gain of 6.9% is observed compared with traditional features while classifying experience levels of radiologists. This gain in accuracy is also substantial across different eye tracker-collected datasets, with improvements of 6.41% using the Tobii eye tracker and 7.29% using the EyeLink eye tracker. These results signify the potential impact of the proposed method for identifying radiologists' level of expertise and those who would benefit from additional training.

Conclusions: The effectiveness of the proposed spatiotemporal discretization approach, validated across diverse datasets and various classification metrics, underscores its potential for objective evaluation, informing targeted interventions and training strategies in radiology. This research advances reliable assessment tools, addressing challenges in perception-related errors to enhance patient care outcomes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
JMIR Formative Research
JMIR Formative Research Medicine-Medicine (miscellaneous)
CiteScore
2.70
自引率
9.10%
发文量
579
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信