Correlation of zero echo time functional MRI with neuronal activity in rats.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Juha S Valjakka, Jaakko Paasonen, Raimo A Salo, Ekaterina Paasonen, Petteri Stenroos, Irina Gureviciene, Mikko Kettunen, Djaudat Idiyatullin, Heikki Tanila, Shalom Michaeli, Silvia Mangia, Olli Gröhn
{"title":"Correlation of zero echo time functional MRI with neuronal activity in rats.","authors":"Juha S Valjakka, Jaakko Paasonen, Raimo A Salo, Ekaterina Paasonen, Petteri Stenroos, Irina Gureviciene, Mikko Kettunen, Djaudat Idiyatullin, Heikki Tanila, Shalom Michaeli, Silvia Mangia, Olli Gröhn","doi":"10.1177/0271678X251314682","DOIUrl":null,"url":null,"abstract":"<p><p>Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X251314682"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251314682","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined. Therefore, we aimed to derive a function to model the temporal dynamics of the zero-TE fMRI signal in response to neuronal activity. Furthermore, we examined the correlation of zero-TE fMRI with neuronal activity across stimulation frequencies. To these ends, we performed simultaneous electrophysiological recordings and zero-TE fMRI in rats subjected to whisker stimulation. The presented impulse response function provides a basis for the statistical modeling of neuronal activity-induced changes in the zero-TE fMRI signal. The temporal characteristics of the zero-TE fMRI response were found to be consistent with the previously postulated non-BOLD hemodynamic origin of the functional contrast. The zero-TE fMRI signal was well predicted by electrophysiological recordings, although systematic stimulation-dependent residuals were also observed, suggesting nonlinearities in neurovascular coupling. We conclude that zero-TE fMRI provides a robust proxy for neuronal activity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信