Timothy Campbell, Richard G Bennett, Robert D Anderson, Chris Davey, Alexandra K O'Donohue, Aaron Schindeler, Kasun De Silva, Ashwin Bhaskaran, Samual Turnbull, Dinesh Selvakumar, Yasuhito Kotake, Chi-Jen Hsu, James J H Chong, Eddy Kizana, Saurabh Kumar
{"title":"Whole-Heart Histological and CMR Validation of Electroanatomic Mapping by Multielectrode Catheters in an Ovine Model.","authors":"Timothy Campbell, Richard G Bennett, Robert D Anderson, Chris Davey, Alexandra K O'Donohue, Aaron Schindeler, Kasun De Silva, Ashwin Bhaskaran, Samual Turnbull, Dinesh Selvakumar, Yasuhito Kotake, Chi-Jen Hsu, James J H Chong, Eddy Kizana, Saurabh Kumar","doi":"10.1016/j.jacep.2024.11.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.</p><p><strong>Objectives: </strong>This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.</p><p><strong>Methods: </strong>In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters. We co-registered electroanatomic mapping, CMR, and histopathology for comparison. Catheter-specific voltage thresholds were identified based on underlying amounts of normal myocardium on transmural histology biopsies.</p><p><strong>Results: </strong>Ten animals were included: 6 with anteroseptal myocardial infarction and 4 control animals. A total of 419,597 points were manually reviewed across the catheters, with 315,487 points used in the analysis. There were minimal differences in bipolar and unipolar voltages, scar areas, and abnormal electrograms between catheters and between rhythms. Catheter-specific bipolar and unipolar voltage thresholds for normal myocardium were High-Density Grid >2.78 mV and >6.19 mV, DuoDecapolar >2.22 mV and >6.05 mV, PentaRay >1.66 mV and >5.35 mV, Decanav >1.36 mV and >4.75 mV, Orion >1.21 mV and >6.05 mV, respectively. Catheter-specific bipolar thresholds improved the accuracy for detecting endo-mid myocardial scar on CMR by 1.8%-15.6% and catheter-specific unipolar thresholds improved the accuracy in the mid-epicardial layers by 25.3%-81.1%.</p><p><strong>Conclusions: </strong>Minimal differences were observed in scar detection and electrogram markers between commercially available multielectrode mapping catheters and differing wave fronts. Compared to traditional voltage criteria for bipolar and unipolar scar, catheter-specific thresholds markedly improved accuracy for delineating scar on CMR.</p>","PeriodicalId":14573,"journal":{"name":"JACC. Clinical electrophysiology","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACC. Clinical electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jacep.2024.11.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate electroanatomic mapping is critical for identifying scar and the long-term success of ventricular tachycardia ablation.
Objectives: This study sought to determine the accuracy of multielectrode mapping (MEM) catheters to identify scar on cardiac magnetic resonance (CMR) and histopathology.
Methods: In an ovine model of myocardial infarction, we examined the effect of electrode size, spacing, and mapping rhythm on scar identification compared to CMR and histopathology using 5 multielectrode mapping catheters. We co-registered electroanatomic mapping, CMR, and histopathology for comparison. Catheter-specific voltage thresholds were identified based on underlying amounts of normal myocardium on transmural histology biopsies.
Results: Ten animals were included: 6 with anteroseptal myocardial infarction and 4 control animals. A total of 419,597 points were manually reviewed across the catheters, with 315,487 points used in the analysis. There were minimal differences in bipolar and unipolar voltages, scar areas, and abnormal electrograms between catheters and between rhythms. Catheter-specific bipolar and unipolar voltage thresholds for normal myocardium were High-Density Grid >2.78 mV and >6.19 mV, DuoDecapolar >2.22 mV and >6.05 mV, PentaRay >1.66 mV and >5.35 mV, Decanav >1.36 mV and >4.75 mV, Orion >1.21 mV and >6.05 mV, respectively. Catheter-specific bipolar thresholds improved the accuracy for detecting endo-mid myocardial scar on CMR by 1.8%-15.6% and catheter-specific unipolar thresholds improved the accuracy in the mid-epicardial layers by 25.3%-81.1%.
Conclusions: Minimal differences were observed in scar detection and electrogram markers between commercially available multielectrode mapping catheters and differing wave fronts. Compared to traditional voltage criteria for bipolar and unipolar scar, catheter-specific thresholds markedly improved accuracy for delineating scar on CMR.
期刊介绍:
JACC: Clinical Electrophysiology is one of a family of specialist journals launched by the renowned Journal of the American College of Cardiology (JACC). It encompasses all aspects of the epidemiology, pathogenesis, diagnosis and treatment of cardiac arrhythmias. Submissions of original research and state-of-the-art reviews from cardiology, cardiovascular surgery, neurology, outcomes research, and related fields are encouraged. Experimental and preclinical work that directly relates to diagnostic or therapeutic interventions are also encouraged. In general, case reports will not be considered for publication.