Challenges in cellular agriculture: lessons from Pacific white shrimp, Litopenaeus vannamei.

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Catherine J Walsh, Tracy A Sherwood, Andrea M Tarnecki, Nicole R Rhody, Kevan L Main, Jessica Restivo
{"title":"Challenges in cellular agriculture: lessons from Pacific white shrimp, Litopenaeus vannamei.","authors":"Catherine J Walsh, Tracy A Sherwood, Andrea M Tarnecki, Nicole R Rhody, Kevan L Main, Jessica Restivo","doi":"10.1007/s11626-024-01011-0","DOIUrl":null,"url":null,"abstract":"<p><p>The overall goal of this research was to develop an embryonic stem cell (ESC) line from the Pacific white shrimp, Litopenaeus vannamei, to support production of cell-based cultivated seafood products towards meeting a growing global demand for sustainable seafood. It was hypothesized that characteristics of ESCs, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could be triggered to differentiate into a muscle cell phenotype. The targeted approach was based on collection of ESCs from fertilized shrimp eggs at the blastomere stage. Various media, supplements, growth factors, and plate coatings were tested to achieve growth of the shrimp ESCs. Although successful in early culture, this manuscript describes substantial challenges encountered as cultures grew over time. The cell cultures were initially dominated by shrimp as indicated by 18S rDNA community analysis, but after multiple passages, thraustochytrids, a common contaminant of invertebrate cell culture, became the predominant cell type. Presence of shrimp cells was confirmed through species-specific primers for the cytochrome C oxidase subunit 1 gene. Presence of thraustochytrids was also confirmed using species-specific primers, morphological features, growth properties, and acriflavine staining. Unsuccessful attempts to eradicate thraustochytrid contamination prevented shrimp cells from thriving. The future of shrimp cell culture depends on eliminating culture contaminants while encouraging growth of shrimp ESCs.</p>","PeriodicalId":13340,"journal":{"name":"In Vitro Cellular & Developmental Biology. Animal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Vitro Cellular & Developmental Biology. Animal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-01011-0","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The overall goal of this research was to develop an embryonic stem cell (ESC) line from the Pacific white shrimp, Litopenaeus vannamei, to support production of cell-based cultivated seafood products towards meeting a growing global demand for sustainable seafood. It was hypothesized that characteristics of ESCs, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could be triggered to differentiate into a muscle cell phenotype. The targeted approach was based on collection of ESCs from fertilized shrimp eggs at the blastomere stage. Various media, supplements, growth factors, and plate coatings were tested to achieve growth of the shrimp ESCs. Although successful in early culture, this manuscript describes substantial challenges encountered as cultures grew over time. The cell cultures were initially dominated by shrimp as indicated by 18S rDNA community analysis, but after multiple passages, thraustochytrids, a common contaminant of invertebrate cell culture, became the predominant cell type. Presence of shrimp cells was confirmed through species-specific primers for the cytochrome C oxidase subunit 1 gene. Presence of thraustochytrids was also confirmed using species-specific primers, morphological features, growth properties, and acriflavine staining. Unsuccessful attempts to eradicate thraustochytrid contamination prevented shrimp cells from thriving. The future of shrimp cell culture depends on eliminating culture contaminants while encouraging growth of shrimp ESCs.

细胞农业的挑战:从凡纳滨对虾(Litopenaeus vannamei)太平洋白虾的经验教训。
这项研究的总体目标是从太平洋白对虾(凡纳滨对虾)中培育胚胎干细胞(ESC)系,以支持以细胞为基础的养殖海产品的生产,以满足全球对可持续海产品不断增长的需求。据推测,ESCs的特性,如高增殖和多能性,将促进连续细胞系的发展,可以触发分化为肌肉细胞表型。目标方法是基于收集卵裂球阶段受精卵的ESCs。对各种培养基、补充物、生长因子和平板涂层进行了测试,以实现对虾ESCs的生长。虽然在早期文化中取得了成功,但该手稿描述了随着时间的推移,文化发展所遇到的实质性挑战。18S rDNA群落分析表明,细胞培养最初以虾为主,但经过多次传代后,无脊椎动物细胞培养中常见的污染物thraustochytrids成为优势细胞类型。通过细胞色素C氧化酶亚基1基因的物种特异性引物证实了虾细胞的存在。利用物种特异性引物、形态特征、生长特性和吖啶黄染色也证实了thraustochytrids的存在。根除thraustochytrid污染的失败尝试阻止了虾细胞的繁殖。虾细胞培养的未来取决于在促进虾内皮干细胞生长的同时消除培养污染物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.80%
发文量
96
审稿时长
3 months
期刊介绍: In Vitro Cellular & Developmental Biology - Animal is a journal of the Society for In Vitro Biology (SIVB). Original manuscripts reporting results of research in cellular, molecular, and developmental biology that employ or are relevant to organs, tissue, tumors, and cells in vitro will be considered for publication. Topics covered include: Biotechnology; Cell and Tissue Models; Cell Growth/Differentiation/Apoptosis; Cellular Pathology/Virology; Cytokines/Growth Factors/Adhesion Factors; Establishment of Cell Lines; Signal Transduction; Stem Cells; Toxicology/Chemical Carcinogenesis; Product Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信