Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring

IF 2 Q3 NEUROSCIENCES
Philip Maseghe Mwachaka, Peter Gichangi, Adel Abdelmalek, Paul Odula, Julius Ogeng’o
{"title":"Maternal dietary folate imbalance alters cerebellar astrocyte morphology and density in offspring","authors":"Philip Maseghe Mwachaka,&nbsp;Peter Gichangi,&nbsp;Adel Abdelmalek,&nbsp;Paul Odula,&nbsp;Julius Ogeng’o","doi":"10.1016/j.ibneur.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function. This study examined the impact of varying maternal dietary folate levels on the morphology and density of cerebellar astrocytes in rat offspring.</div></div><div><h3>Materials and methods</h3><div>Twelve adult female rats (<em>Rattus norvegicus</em>) were randomly allocated to one of four premixed food groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began their diets 14 days before mating and continued throughout pregnancy and lactation. On postnatal day 35, five pups from each group were sacrificed and their cerebellums were processed for immunohistochemical examination. The cerebellar astrocytes were labelled with an antibody against Glial Fibrillary Acid Protein (GFAP).</div></div><div><h3>Results</h3><div>The offspring of the folate-deficient diet group exhibited few Bergmann and granule layer astrocytes. The Bergmann radial glial processes in this group were thinner, discontinuous, poorly organised, and had unclear end feet compared to controls. Conversely, the folate-supplemented group showed a predominance of well-organized Bergmann glia astrocytes with distinct, thicker, and densely packed processes, ending in clear conical pial foot processes. In the supra-supplemented group, there was evidence of astrogliosis in the form of large granule layer astrocytes with extended cytoplasmic projections. The Bergmann glia in this group were fewer and more varied in distribution and morphology. Some locations had many astrocytic processes, whereas others had none. Some processes were discontinuous and tortuous. The proportion of cerebellar cortical GFAP immunoreactive cells in folate-deficient diet, controls, folate-supplemented, and folate supra-supplemented groups were 2.09 ± 0.06 %, 4.69 ± 0.12 %, 10.14 ± 0.67 %, and 23.12 ± 3.48 %, respectively (p &lt; 0.001).</div></div><div><h3>Conclusions</h3><div>These findings imply that both folate deficiency and excess supplementation in pregnancy can impair normal cerebellar astrocyte development, highlighting the importance of balanced folate levels during pregnancy for optimal neurodevelopmental outcomes.</div></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"18 ","pages":"Pages 78-87"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124001167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Maternal folate usage is essential for neurodevelopment, but its effects on cerebellar structure are unclear. Cerebellum undergoes a protracted period of development, making it sensitive to maternal nutritional imbalances. Astrocytes are necessary for cerebellar cortex structure and function. This study examined the impact of varying maternal dietary folate levels on the morphology and density of cerebellar astrocytes in rat offspring.

Materials and methods

Twelve adult female rats (Rattus norvegicus) were randomly allocated to one of four premixed food groups: standard (2 mg/kg), folate-deficient (0 mg/kg), folate-supplemented (8 mg/kg), or folate supra-supplemented (40 mg/kg). The rats began their diets 14 days before mating and continued throughout pregnancy and lactation. On postnatal day 35, five pups from each group were sacrificed and their cerebellums were processed for immunohistochemical examination. The cerebellar astrocytes were labelled with an antibody against Glial Fibrillary Acid Protein (GFAP).

Results

The offspring of the folate-deficient diet group exhibited few Bergmann and granule layer astrocytes. The Bergmann radial glial processes in this group were thinner, discontinuous, poorly organised, and had unclear end feet compared to controls. Conversely, the folate-supplemented group showed a predominance of well-organized Bergmann glia astrocytes with distinct, thicker, and densely packed processes, ending in clear conical pial foot processes. In the supra-supplemented group, there was evidence of astrogliosis in the form of large granule layer astrocytes with extended cytoplasmic projections. The Bergmann glia in this group were fewer and more varied in distribution and morphology. Some locations had many astrocytic processes, whereas others had none. Some processes were discontinuous and tortuous. The proportion of cerebellar cortical GFAP immunoreactive cells in folate-deficient diet, controls, folate-supplemented, and folate supra-supplemented groups were 2.09 ± 0.06 %, 4.69 ± 0.12 %, 10.14 ± 0.67 %, and 23.12 ± 3.48 %, respectively (p < 0.001).

Conclusions

These findings imply that both folate deficiency and excess supplementation in pregnancy can impair normal cerebellar astrocyte development, highlighting the importance of balanced folate levels during pregnancy for optimal neurodevelopmental outcomes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IBRO Neuroscience Reports
IBRO Neuroscience Reports Neuroscience-Neuroscience (all)
CiteScore
2.80
自引率
0.00%
发文量
99
审稿时长
14 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信