Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Dominik W Melville, Magdalena Meyer, Corbinian Kümmerle, Kevin A Alvarado-Barrantes, Kerstin Wilhelm, Simone Sommer, Marco Tschapka, Alice Risely
{"title":"Delayed feeding disrupts diurnal oscillations in the gut microbiome of a neotropical bat in captivity.","authors":"Dominik W Melville, Magdalena Meyer, Corbinian Kümmerle, Kevin A Alvarado-Barrantes, Kerstin Wilhelm, Simone Sommer, Marco Tschapka, Alice Risely","doi":"10.1093/femsec/fiaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783575/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf012","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diurnal rhythms of the gut microbiota are emerging as an important yet often overlooked facet of microbial ecology. Feeding is thought to stimulate gut microbial rhythmicity, but this has not been explicitly tested. Moreover, the role of the gut environment is entirely unexplored, with rhythmic changes to gut pH rather than feeding per se possibly affecting gut microbial fluctuations. In this study, we experimentally manipulated the feeding schedule of captive lesser long-nosed bats, Leptonycteris yerbabuenae, to dissociate photic and feeding cues, and measured the faecal microbiota and gut pH every 2 h. We detected strong diurnal rhythms in both microbial alpha diversity and beta diversity as well as in pH within the control group. However, a delay in feeding disrupted oscillations of gut microbial diversity and composition, but did not affect rhythms in gut pH. The oscillations of some genera, such as Streptococcus, which aid in metabolizing nutrients, shifted in accordance with the delayed-feeding cue and were correlated with pH. For other bacterial genera, oscillations were disturbed and no connection to pH was found. Our findings suggest that the rhythmic proliferation of bacteria matches peak feeding times, providing evidence that diurnal rhythms of the gut microbiota likely evolved to optimize their metabolic support to the host's circadian phenotype.

求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信