Lorenzo Depau, Jlenia Brunetti, Chiara Falciani, Elisabetta Mandarini, Marta Zanchi, Maria Francesca Paolocci, Marta Garfì, Alessandro Pini, Luisa Bracci
{"title":"Targeting heparan sulfate proteoglycans as an effective strategy for inhibiting cancer cell migration and invasiveness compared to heparin.","authors":"Lorenzo Depau, Jlenia Brunetti, Chiara Falciani, Elisabetta Mandarini, Marta Zanchi, Maria Francesca Paolocci, Marta Garfì, Alessandro Pini, Luisa Bracci","doi":"10.3389/fcell.2024.1505680","DOIUrl":null,"url":null,"abstract":"<p><p>By virtue of their ability to bind different growth factors, morphogens and extracellular matrix proteins, heparan sulfate proteoglycans (HSPGs) play a determinant role in cancer cell differentiation and migration. Despite a strong conceptual basis and promising preclinical results, clinical trials have failed to demonstrate any significant advantage of administering heparin to oncology patients. We exploited our anti-heparan sulfate branched peptide NT4 to test the opposite approach, namely, targeting HSPGs to interfere with their functions, instead of using heparin as a soluble competitor in human cell lines from pancreas adenocarcinoma, colon adenocarcinoma, rhabdomyosarcoma and two different breast cancers. We found that the anti-heparan sulfate peptide NT4 is more effective than heparin for inhibiting cancer cell adhesion, directional migration, colony formation and even cell growth, suggesting that targeting cell membrane HSPGs may be a more effective anti-metastatic strategy than using soluble heparin. Analysis of NT4 effects on cancer cell directional migration, associated to cellular distribution of HSPGs and cadherins in different migrating cancer cell lines, provided further indications on the molecular basis of HSPG functions, which may explain the efficiency of the HSPG targeting peptide.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1505680"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750806/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1505680","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
By virtue of their ability to bind different growth factors, morphogens and extracellular matrix proteins, heparan sulfate proteoglycans (HSPGs) play a determinant role in cancer cell differentiation and migration. Despite a strong conceptual basis and promising preclinical results, clinical trials have failed to demonstrate any significant advantage of administering heparin to oncology patients. We exploited our anti-heparan sulfate branched peptide NT4 to test the opposite approach, namely, targeting HSPGs to interfere with their functions, instead of using heparin as a soluble competitor in human cell lines from pancreas adenocarcinoma, colon adenocarcinoma, rhabdomyosarcoma and two different breast cancers. We found that the anti-heparan sulfate peptide NT4 is more effective than heparin for inhibiting cancer cell adhesion, directional migration, colony formation and even cell growth, suggesting that targeting cell membrane HSPGs may be a more effective anti-metastatic strategy than using soluble heparin. Analysis of NT4 effects on cancer cell directional migration, associated to cellular distribution of HSPGs and cadherins in different migrating cancer cell lines, provided further indications on the molecular basis of HSPG functions, which may explain the efficiency of the HSPG targeting peptide.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.