Daria Y Romanova, Alexander A Povernov, Mikhail A Nikitin, Simkha I Borman, Yana A Frank, Leonid L Moroz
{"title":"Long-term dynamics of placozoan culture: emerging models for population and space biology.","authors":"Daria Y Romanova, Alexander A Povernov, Mikhail A Nikitin, Simkha I Borman, Yana A Frank, Leonid L Moroz","doi":"10.3389/fcell.2024.1514553","DOIUrl":null,"url":null,"abstract":"<p><p>As the simplest free-living animal, <i>Trichoplax adhaerens</i> (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of <i>Trichoplax</i> cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment. This study revealed very complex population dynamics, with seasonal oscillation and at least partial correlations with the solar radio emission flux and the magnetic field disturbance parameters. Notable, the analysis of the distribution of Fe<sup>2+</sup> in living animals revealed not only its high abundance across most cells but also asymmetric localizations of Fe<sup>2+</sup> in unidentified cells, suggesting that these Fe<sup>2+</sup> intracellular patterns might be coupled with the animal's bioenergetics. We hypothesize that placozoans might have magnetoreception, which can be experimentally tested in future studies. In sum, <i>Trichoplax</i>, in particular, and Placozoa, in general, can be viewed as prospective reference species in traditional evolutionary and system biology but have the yet unexplored potential for planetary ecology and space biomedicine.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1514553"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1514553","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the simplest free-living animal, Trichoplax adhaerens (Placozoa) is emerging as a powerful paradigm to decipher molecular and cellular bases of behavior, enabling integrative studies at all levels of biological organization in the context of metazoan evolution and parallel origins of neural organization. However, the progress in this direction also depends on the ability to maintain a long-term culture of placozoans. Here, we report the dynamic of Trichoplax cultures over 11 years of observations from a starting clonal line, including 7 years of culturing under antibiotic (ampicillin) treatment. This study revealed very complex population dynamics, with seasonal oscillation and at least partial correlations with the solar radio emission flux and the magnetic field disturbance parameters. Notable, the analysis of the distribution of Fe2+ in living animals revealed not only its high abundance across most cells but also asymmetric localizations of Fe2+ in unidentified cells, suggesting that these Fe2+ intracellular patterns might be coupled with the animal's bioenergetics. We hypothesize that placozoans might have magnetoreception, which can be experimentally tested in future studies. In sum, Trichoplax, in particular, and Placozoa, in general, can be viewed as prospective reference species in traditional evolutionary and system biology but have the yet unexplored potential for planetary ecology and space biomedicine.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.