Truncated SPAG9 as a novel candidate gene for a new syndrome: Coarse facial features, albinism, cataract and developmental delay (CACD syndrome).

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Genetics and Molecular Biology Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.1590/1678-4685-GMB-2024-0094
Majid Alfadhel, Bashayr S Alhubayshi, Muhammad Umair, Ahmed Alfaidi, Deemah Alwadaani, Essra Aloyouni, Safdar Abbas, Abdulkareem Al Abdulrahman, Mohammed Aldrees, Abeer Al Tuwaijri, Ruaa S Alharithy, Abdulaziz Alajlan, Abdulrahman Alswaid, Saad Almohrij, Sultan Al-Khenaizan
{"title":"Truncated SPAG9 as a novel candidate gene for a new syndrome: Coarse facial features, albinism, cataract and developmental delay (CACD syndrome).","authors":"Majid Alfadhel, Bashayr S Alhubayshi, Muhammad Umair, Ahmed Alfaidi, Deemah Alwadaani, Essra Aloyouni, Safdar Abbas, Abdulkareem Al Abdulrahman, Mohammed Aldrees, Abeer Al Tuwaijri, Ruaa S Alharithy, Abdulaziz Alajlan, Abdulrahman Alswaid, Saad Almohrij, Sultan Al-Khenaizan","doi":"10.1590/1678-4685-GMB-2024-0094","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm-associated antigen 9 (SPAG9) is a member of cancer-testis antigen, having characteristics of a scaffold protein, which is involved in the c-Jun N-terminal kinase JNK signaling pathway, suggesting its key involvement in different physiological processes, such as survival, apoptosis, tumorigenesis, and cell proliferation. We identified two families (A and B) having multisystem features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Whole genome sequencing (WGS) in families A and B revealed a homozygous frameshift variant (c.903del; p.Phe301Leufs*2) in the SPAG9 gene. Sanger sequencing of both families revealed perfect segregation of the identified variant in all family members. 3D protein modeling revealed substantial changes in the protein's secondary structure. Furthermore, RT-qPCR revealed a substantial reduction of SPAG9 gene expression at the mRNA level in the affected individuals of both families, thus supporting the pathogenic nature of the identified variant. For the first time in the literature, biallelic SPAG9 gene variation was linked to multisystem-exhibiting features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Thus, this data supports the notion that SPAG9 plays an important role in a multisystemic disorder in humans.</p>","PeriodicalId":12557,"journal":{"name":"Genetics and Molecular Biology","volume":"48 1","pages":"e20240094"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2024-0094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sperm-associated antigen 9 (SPAG9) is a member of cancer-testis antigen, having characteristics of a scaffold protein, which is involved in the c-Jun N-terminal kinase JNK signaling pathway, suggesting its key involvement in different physiological processes, such as survival, apoptosis, tumorigenesis, and cell proliferation. We identified two families (A and B) having multisystem features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Whole genome sequencing (WGS) in families A and B revealed a homozygous frameshift variant (c.903del; p.Phe301Leufs*2) in the SPAG9 gene. Sanger sequencing of both families revealed perfect segregation of the identified variant in all family members. 3D protein modeling revealed substantial changes in the protein's secondary structure. Furthermore, RT-qPCR revealed a substantial reduction of SPAG9 gene expression at the mRNA level in the affected individuals of both families, thus supporting the pathogenic nature of the identified variant. For the first time in the literature, biallelic SPAG9 gene variation was linked to multisystem-exhibiting features like coarse facial features, albinism, cataracts, skeletal abnormalities, and developmental delay. Thus, this data supports the notion that SPAG9 plays an important role in a multisystemic disorder in humans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Genetics and Molecular Biology
Genetics and Molecular Biology 生物-生化与分子生物学
CiteScore
4.20
自引率
4.80%
发文量
111
审稿时长
3 months
期刊介绍: Genetics and Molecular Biology (formerly named Revista Brasileira de Genética/Brazilian Journal of Genetics - ISSN 0100-8455) is published by the Sociedade Brasileira de Genética (Brazilian Society of Genetics). The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. Manuscripts presenting methods and applications only, without an analysis of genetic data, will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信