{"title":"Probabilistically constrained vector summation of motion direction in the mouse superior colliculus.","authors":"Chuiwen Li, Victor J DePiero, Hui Chen, Seiji Tanabe, Jianhua Cang","doi":"10.1016/j.cub.2024.12.029","DOIUrl":null,"url":null,"abstract":"<p><p>Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling effective interactions with the environment. Here, we study how the superior colliculus (SC) integrates motion information using asymmetric plaids composed of drifting gratings of different directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we find that mouse SC neurons integrate motion direction by performing vector summation of the component gratings. The computation is constrained probabilistically by the possible physical motions consistent with each grating. Excitatory and inhibitory SC neurons respond similarly to the plaid stimuli. Finally, the probabilistically constrained vector summation also guides optokinetic eye movements. Such a computation is fundamentally different from that in the visual cortex, where motion integration follows the intersection of the constraints. Our studies thus demonstrate a novel neural computation in motion processing and raise intriguing questions regarding its neuronal implementation and functional significance.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.12.029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling effective interactions with the environment. Here, we study how the superior colliculus (SC) integrates motion information using asymmetric plaids composed of drifting gratings of different directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we find that mouse SC neurons integrate motion direction by performing vector summation of the component gratings. The computation is constrained probabilistically by the possible physical motions consistent with each grating. Excitatory and inhibitory SC neurons respond similarly to the plaid stimuli. Finally, the probabilistically constrained vector summation also guides optokinetic eye movements. Such a computation is fundamentally different from that in the visual cortex, where motion integration follows the intersection of the constraints. Our studies thus demonstrate a novel neural computation in motion processing and raise intriguing questions regarding its neuronal implementation and functional significance.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.