Synthesis, Molecular Docking, Antimicrobial, and Antioxidant Evaluation of Novel Dithiazole and Thiazole Derivatives.

IF 2.5 4区 化学 Q3 CHEMISTRY, ORGANIC
Rizk E Khidre, Eman Sabry, Ashraf A Sediek, Ahmed F El-Sayed
{"title":"Synthesis, Molecular Docking, Antimicrobial, and Antioxidant Evaluation of Novel Dithiazole and Thiazole Derivatives.","authors":"Rizk E Khidre, Eman Sabry, Ashraf A Sediek, Ahmed F El-Sayed","doi":"10.2174/0115701794334314241212114056","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>An efficient procedure was reported for the synthesis of novel hybrid dithiazoles 7 and thiazoles 15, in good yields, by applying hydrazonyl chlorides 4 with thiocarbohydrazone derivatives 3 and 12.</p><p><strong>Methods: </strong>The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.</p><p><strong>Results: </strong>According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents. Thus, 7a's DPPH radical scavenging activity was excellent (38.19±0.33 and 14.37±0.4) at concentrations of 2.0 and 1.0 mg/mL, respectively. In addition, compound 3 exhibited activity against all bacterial strains tested, as evidenced by inhibition zones measuring that ranged from 8.5±0.43 mm for <i>E. faecalis</i> to 16.5±0.43 mm for <i>S. mutans</i>.</p><p><strong>Conclusion: </strong>The MIC results showed that compound 3 was effective against <i>E. coli, S. aureus, E. faecalis, P. aeruginosa</i>, and <i>S. mutans</i> at concentrations of 1.0, 1.0, 2.0, 1.0, and 1.0 mg/mL, respectively. Furthermore, molecular docking has shown lower binding energy with different types of interactions at the active sites of Dihydropteroate synthase, Sortase A, LasR, and penicillin-binding protein pockets, indicating that these compounds could inhibit the enzyme and cause promising antimicrobial effects.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":"662-682"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794334314241212114056","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: An efficient procedure was reported for the synthesis of novel hybrid dithiazoles 7 and thiazoles 15, in good yields, by applying hydrazonyl chlorides 4 with thiocarbohydrazone derivatives 3 and 12.

Methods: The thiazole derivatives were evaluated for their antimicrobial and antioxidant activities.

Results: According to the results, thiazoles revealed marked potency as antimicrobial and antioxidant agents. Thus, 7a's DPPH radical scavenging activity was excellent (38.19±0.33 and 14.37±0.4) at concentrations of 2.0 and 1.0 mg/mL, respectively. In addition, compound 3 exhibited activity against all bacterial strains tested, as evidenced by inhibition zones measuring that ranged from 8.5±0.43 mm for E. faecalis to 16.5±0.43 mm for S. mutans.

Conclusion: The MIC results showed that compound 3 was effective against E. coli, S. aureus, E. faecalis, P. aeruginosa, and S. mutans at concentrations of 1.0, 1.0, 2.0, 1.0, and 1.0 mg/mL, respectively. Furthermore, molecular docking has shown lower binding energy with different types of interactions at the active sites of Dihydropteroate synthase, Sortase A, LasR, and penicillin-binding protein pockets, indicating that these compounds could inhibit the enzyme and cause promising antimicrobial effects.

新型二噻唑及其衍生物的合成、分子对接、抗菌和抗氧化评价。
介绍了一种新的杂化双噻唑7和噻唑15的高效合成方法,该方法是用腙酰氯4和硫代碳腙衍生物3和12合成的。方法:对噻唑类化合物的抗菌和抗氧化活性进行评价。结果:噻唑类药物具有明显的抗菌和抗氧化作用。因此,在浓度为2.0和1.0 mg/mL时,7a的DPPH自由基清除活性分别为38.19±0.33和14.37±0.4。此外,化合物3对所有细菌都有抑制作用,对粪肠杆菌的抑制范围为8.5±0.43 mm,对变形链球菌的抑制范围为16.5±0.43 mm。结论:MIC实验结果显示,化合物3在浓度分别为1.0、1.0、2.0、1.0、1.0 mg/mL时对大肠杆菌、金黄色葡萄球菌、粪肠球菌、铜绿假单胞菌和变形葡萄球菌有较好的抑菌效果。此外,分子对接显示,在二氢翼酸合成酶、排序酶A、LasR和青霉素结合蛋白口袋的活性位点上,不同类型的相互作用具有较低的结合能,表明这些化合物可以抑制酶并产生有希望的抗菌作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信