{"title":"Synthesis of Some Thiazolyl and Oxazolyl Quinazoline Derivatives as Potential Anti-Microbial Agents.","authors":"Krishana Kumar Sharma, Gandharve Kumar, Shoma Devi, Gajendra Kumar","doi":"10.2174/0115701794320263240918115444","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.</p><p><strong>Methods: </strong>A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated. Moreover, they were compared with the well-known drugs Imipenem (as an antibacterial agent) and Miconazole (as an antifungal).</p><p><strong>Results: </strong>Compound 3c' exhibited higher potential activity compared to newly synthesized other compounds and standard drugs when tested against the microorganism.</p><p><strong>Conclusion: </strong>The structure of substances was determined through elemental analysis (C.H.N.) and various spectroscopic technique (1H NMR, 13C NMR, IR, and GCMS).</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794320263240918115444","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Quinazoline holds significant importance in pharmaceutical chemistry, which is included in a range of drugs, clinical contenders, and bioactive compounds. N-contain-ing heterocyclic compounds of quinazoline have a wide and distinct range of biopharmaceutical activities.
Methods: A series of newly synthesized heterocyclic compounds, namely, N-(4-substituted ben-zylidene)-2-(2-aminothiazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a'-3e') and N-(4-substi-tuted benzylidene)-2-(2-aminooxazol-4-yl)-6-methylquinazolin-3(4H)-amines (3a-3e), were synthesized starting from 6-methylquinazolin-3(4H)-amine and 4-substituted benzaldehyde and their antibacterial and antifungal properties were evaluated. Moreover, they were compared with the well-known drugs Imipenem (as an antibacterial agent) and Miconazole (as an antifungal).
Results: Compound 3c' exhibited higher potential activity compared to newly synthesized other compounds and standard drugs when tested against the microorganism.
Conclusion: The structure of substances was determined through elemental analysis (C.H.N.) and various spectroscopic technique (1H NMR, 13C NMR, IR, and GCMS).
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.