Synthesis, X-Ray Structure, Characterization, Antifungal Activity, DFT, and Molecular Simulation of a Novel Pyrazole Carboxylic Acid.

IF 2.9 4区 医学 Q3 CHEMISTRY, MEDICINAL
Said Tighadouini, Imane Yamari, Othmane Roby, Abdullah Y A Alzahrani, Oussama Abchir, Imane Nait Irahal, Rafik Saddik, Marilena Ferbinteanu, Samir Chtita
{"title":"Synthesis, X-Ray Structure, Characterization, Antifungal Activity, DFT, and Molecular Simulation of a Novel Pyrazole Carboxylic Acid.","authors":"Said Tighadouini, Imane Yamari, Othmane Roby, Abdullah Y A Alzahrani, Oussama Abchir, Imane Nait Irahal, Rafik Saddik, Marilena Ferbinteanu, Samir Chtita","doi":"10.2174/0115680266348692241211111312","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.</p><p><strong>Methods: </strong>Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD). The antifungal activity of the compound was assessed in vitro, and its molecular structure was studied using Density Functional Theory (DFT). Molecular docking and dynamics simulations were conducted to evaluate the interaction of the compound with sterol 14-alpha demethylase (CYP51) from Candida albicans. ADME/Tox evaluations were also performed to assess the drug-like properties of compound L1.</p><p><strong>Results: </strong>Compound L1 exhibited moderate antifungal activity with an IC50 value of 34.25 μg/mL. DFT studies confirmed the highly stable molecular structure of the compound. Molecular docking and dynamics simulations demonstrated that compound L1 had a higher affinity and stability when forming complexes with the crystal structure of CYP51, particularly in interaction with the tetrazole- based antifungal drug candidate VT1161 (PDB ID: 5TZ1). ADME/Tox evaluations indicated favorable drug-like properties for compound L1.</p><p><strong>Conclusion: </strong>The results suggest that compound L1 is a promising antifungal candidate, showing greater potential than fluconazole in the conducted evaluations. Further studies are warranted to explore its full therapeutic potential.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266348692241211111312","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The search for new antifungal agents is critical due to the rising resistance of fungal pathogens to existing treatments. This study focuses on the synthesis and evaluation of a novel compound, 1-benzyl-5-methyl-1H-pyrazole-3-carboxylic acid (compound L1), as a potential antifungal agent.

Methods: Compound L1 was synthesized and characterized using a range of analytical techniques, including 1H^1H1H NMR, 13C^{13}C13C NMR, FT-IR, GC-MS, and X-ray single crystal diffraction (XRD). The antifungal activity of the compound was assessed in vitro, and its molecular structure was studied using Density Functional Theory (DFT). Molecular docking and dynamics simulations were conducted to evaluate the interaction of the compound with sterol 14-alpha demethylase (CYP51) from Candida albicans. ADME/Tox evaluations were also performed to assess the drug-like properties of compound L1.

Results: Compound L1 exhibited moderate antifungal activity with an IC50 value of 34.25 μg/mL. DFT studies confirmed the highly stable molecular structure of the compound. Molecular docking and dynamics simulations demonstrated that compound L1 had a higher affinity and stability when forming complexes with the crystal structure of CYP51, particularly in interaction with the tetrazole- based antifungal drug candidate VT1161 (PDB ID: 5TZ1). ADME/Tox evaluations indicated favorable drug-like properties for compound L1.

Conclusion: The results suggest that compound L1 is a promising antifungal candidate, showing greater potential than fluconazole in the conducted evaluations. Further studies are warranted to explore its full therapeutic potential.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
2.90%
发文量
186
审稿时长
3-8 weeks
期刊介绍: Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信