Benzimidazole-phenoxy-1,2,3-triazole-benzyl Derivatives as the New Potent α-glucosidase Inhibitors: Design, Synthesis, In Vitro, and In Silico Biological Evaluations.

IF 1.7 4区 化学 Q3 CHEMISTRY, ORGANIC
Arash Soltani, Hadi Shirzad, Mohammad Panji, Elahe Motevaseli, Seyyed Amin Mousavinezhad, Saeed Kalbasi
{"title":"Benzimidazole-phenoxy-1,2,3-triazole-benzyl Derivatives as the New Potent α-glucosidase Inhibitors: Design, Synthesis, In Vitro, and In Silico Biological Evaluations.","authors":"Arash Soltani, Hadi Shirzad, Mohammad Panji, Elahe Motevaseli, Seyyed Amin Mousavinezhad, Saeed Kalbasi","doi":"10.2174/0115701794335556241209175911","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>α-Glucosidase inhibitors play an important role in the treatment of type 2 diabetes mellitus. Inhibitors of the latter enzyme that are available on the market created gastrointestinal side effects and achieve to a high potent and low side effect potent α-glucosidase inhibitors is a valuable target for medicinal chemists.</p><p><strong>Objective: </strong>In this study, derivatives of benzimidazole-phenoxy-1,2,3-triazole-benzyl skeleton were introduced as new α-glucosidase inhibitors.</p><p><strong>Methods: </strong>Twelve derivatives 8a-l of target scaffold were synthesized via simple chemical re-actions with a yield between 65 and 88%. The in vitro α-glucosidase inhibition activities of these compounds was evaluated against yeast form of this enzyme. After the determination of most potent compound, the interaction of this compound with α-glucosidase was evaluated in vitro by kinetic study and in silico by docking study. Drug-likeness, pharmacokinetics, and toxicity profiles of the most potent compound were predicted by an online software.</p><p><strong>Results: </strong>Anti-α-glucosidase assay demonstrated that all synthesized derivatives 8a-l were more potent that standard inhibitor acarbose. Representatively, 2-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benzo[d]imidazole (compound 8a) as the most potent derivative was 150-times more potent than positive control. Kinetic study of compound 8a revealed that this compound is an uncompetitive inhibitor against α-glucosidase. Furthermore, molecular docking study showed that compound 8a with favorable binding energy attached to important residues in the α-glucosidase active site. This compound also can be an oral drug with favorable toxicity profile.</p><p><strong>Conclusion: </strong>Benzimidazole-phenoxy-1,2,3-triazole-benzyl derivatives 8a-l synthesized and evaluated for anti-α-glucosidase activity. All these compounds were excellent α-glucosidase inhibitor, and compound 8a demonstrated the most significant inhibition effect when com-pared with positive control.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794335556241209175911","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: α-Glucosidase inhibitors play an important role in the treatment of type 2 diabetes mellitus. Inhibitors of the latter enzyme that are available on the market created gastrointestinal side effects and achieve to a high potent and low side effect potent α-glucosidase inhibitors is a valuable target for medicinal chemists.

Objective: In this study, derivatives of benzimidazole-phenoxy-1,2,3-triazole-benzyl skeleton were introduced as new α-glucosidase inhibitors.

Methods: Twelve derivatives 8a-l of target scaffold were synthesized via simple chemical re-actions with a yield between 65 and 88%. The in vitro α-glucosidase inhibition activities of these compounds was evaluated against yeast form of this enzyme. After the determination of most potent compound, the interaction of this compound with α-glucosidase was evaluated in vitro by kinetic study and in silico by docking study. Drug-likeness, pharmacokinetics, and toxicity profiles of the most potent compound were predicted by an online software.

Results: Anti-α-glucosidase assay demonstrated that all synthesized derivatives 8a-l were more potent that standard inhibitor acarbose. Representatively, 2-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-1H-benzo[d]imidazole (compound 8a) as the most potent derivative was 150-times more potent than positive control. Kinetic study of compound 8a revealed that this compound is an uncompetitive inhibitor against α-glucosidase. Furthermore, molecular docking study showed that compound 8a with favorable binding energy attached to important residues in the α-glucosidase active site. This compound also can be an oral drug with favorable toxicity profile.

Conclusion: Benzimidazole-phenoxy-1,2,3-triazole-benzyl derivatives 8a-l synthesized and evaluated for anti-α-glucosidase activity. All these compounds were excellent α-glucosidase inhibitor, and compound 8a demonstrated the most significant inhibition effect when com-pared with positive control.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current organic synthesis
Current organic synthesis 化学-有机化学
CiteScore
3.40
自引率
5.60%
发文量
86
审稿时长
6-12 weeks
期刊介绍: Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信