Multilevel Analysis of Ground Beetle Responses to Forest Management: Integrating Species Composition, Morphological Traits and Developmental Instability

IF 2.3 2区 生物学 Q2 ECOLOGY
Dominik Stočes, Jan Šipoš
{"title":"Multilevel Analysis of Ground Beetle Responses to Forest Management: Integrating Species Composition, Morphological Traits and Developmental Instability","authors":"Dominik Stočes,&nbsp;Jan Šipoš","doi":"10.1002/ece3.70793","DOIUrl":null,"url":null,"abstract":"<p>This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic. The first layer assessed assemblage composition with ecological and dietary preferences across control, ecotone and clearing treatments using multivariate techniques. Building on species-level knowledge, the second layer analysed the interaction between coarse traits, such as wing morphology and fine-scale body traits, including body size (proxied by elytron length), head width and last abdominal sternite, to assess their relationship with the different treatments. These interactions were explored as intraspecific wing plasticity can affect functional interpretations. The third layer focused on fluctuating asymmetry as an intraindividual indicator of developmental instability, examining how ground beetles respond to environmental stressors. Our findings revealed: (i) no significant impact of habitat treatments on the presence of specialist species in the assemblage analysis; (ii) analysis of morphological traits highlights the combined influence of a coarse trait, such as wing morphology, and a fine trait, such as head width, which together contribute to the partitioning of assemblages and help distinguish differences in habitat use; and (iii) FA analysis revealed a significant positive association between the second antennal segment of specialist species and litter while displaying a negative association with Collembola. This multilevel analytical framework not only confirms ecological findings but also advances our approach to habitat and species analysis, offering deeper insights into ecosystem dynamics.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70793","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic. The first layer assessed assemblage composition with ecological and dietary preferences across control, ecotone and clearing treatments using multivariate techniques. Building on species-level knowledge, the second layer analysed the interaction between coarse traits, such as wing morphology and fine-scale body traits, including body size (proxied by elytron length), head width and last abdominal sternite, to assess their relationship with the different treatments. These interactions were explored as intraspecific wing plasticity can affect functional interpretations. The third layer focused on fluctuating asymmetry as an intraindividual indicator of developmental instability, examining how ground beetles respond to environmental stressors. Our findings revealed: (i) no significant impact of habitat treatments on the presence of specialist species in the assemblage analysis; (ii) analysis of morphological traits highlights the combined influence of a coarse trait, such as wing morphology, and a fine trait, such as head width, which together contribute to the partitioning of assemblages and help distinguish differences in habitat use; and (iii) FA analysis revealed a significant positive association between the second antennal segment of specialist species and litter while displaying a negative association with Collembola. This multilevel analytical framework not only confirms ecological findings but also advances our approach to habitat and species analysis, offering deeper insights into ecosystem dynamics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信