Ir-Catalyzed Intermolecular Arylthiocyanation of Alkenes.

IF 1.6 4区 医学 Q4 BIOCHEMICAL RESEARCH METHODS
Jie Xu, Jing Leng, Hao Huang, Yanan Li, Ying Qi Chen
{"title":"Ir-Catalyzed Intermolecular Arylthiocyanation of Alkenes.","authors":"Jie Xu, Jing Leng, Hao Huang, Yanan Li, Ying Qi Chen","doi":"10.2174/0113862073347918241209052708","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.</p><p><strong>Methods: </strong>Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield. Radical trapping and nucleophilic trapping experiments were carried out to explore the mechanistic pathways. The experiments indicated the involvement of free-radical and carbenium ion intermediate processes. Diaryliodonium salts were used as the radical arylating reagent, and KSCN was the electrophilic cyanating reagent. Under irradiation, the excited photocatalyst reduced aryldiazonium salt to aryl radical. Then, the radical was added to olefin to generate a new radical. Finally, the generated radical was further oxidized and arrested by SCN anion.</p><p><strong>Conclusion: </strong>This coupling reaction provides a straightforward and practical route to construct various aryl-substituted alkylthiocyanates.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073347918241209052708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.

Methods: Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield. Radical trapping and nucleophilic trapping experiments were carried out to explore the mechanistic pathways. The experiments indicated the involvement of free-radical and carbenium ion intermediate processes. Diaryliodonium salts were used as the radical arylating reagent, and KSCN was the electrophilic cyanating reagent. Under irradiation, the excited photocatalyst reduced aryldiazonium salt to aryl radical. Then, the radical was added to olefin to generate a new radical. Finally, the generated radical was further oxidized and arrested by SCN anion.

Conclusion: This coupling reaction provides a straightforward and practical route to construct various aryl-substituted alkylthiocyanates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.60%
发文量
327
审稿时长
7.5 months
期刊介绍: Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal: Target identification and validation Assay design, development, miniaturization and comparison High throughput/high content/in silico screening and associated technologies Label-free detection technologies and applications Stem cell technologies Biomarkers ADMET/PK/PD methodologies and screening Probe discovery and development, hit to lead optimization Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries) Chemical library design and chemical diversity Chemo/bio-informatics, data mining Compound management Pharmacognosy Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products) Natural Product Analytical Studies Bipharmaceutical studies of Natural products Drug repurposing Data management and statistical analysis Laboratory automation, robotics, microfluidics, signal detection technologies Current & Future Institutional Research Profile Technology transfer, legal and licensing issues Patents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信